On the Strong Limit Theorems for Double Arrays of Blockwise M-dependent Random Variables

被引:18
作者
Stadtmueller, Ulrich [1 ]
Le Van Thanh [2 ]
机构
[1] Univ Ulm, Dept Number & Probabil Theory, D-89069 Ulm, Germany
[2] Vinh Univ, Dept Math, Nghe An 42118, Vietnam
关键词
Blockwise M-dependent random variables; strong law of large numbers; double arrays of random variables; almost sure convergence; ORTHOGONAL RANDOM ELEMENTS; LARGE NUMBERS; STRONG LAWS; DIMENSIONAL ARRAYS; CONVERGENCE-RATES; BANACH-SPACES; SEQUENCES; SUMS;
D O I
10.1007/s10114-011-0110-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a double array of blockwise M-dependent random variables {X-mn, m >= 1, n >= 1}, strong laws of large numbers are established for double sums Sigma(m)(i=1) Sigma(n)(j=1) X-ij, m >= 1, n >= 1. The main results are obtained for (i) random variables {X-mn, m >= 1, n >= 1} being non-identically distributed but satisfy a condition on the summability condition for the moments and (ii) random variables {X-mn, m >= 1, n >= 1} being stochastically dominated. The result in Case (i) generalizes the main result of Moricz et al. [J. Theoret. Probab., 21, 660-671 (2008)] from dyadic to arbitrary blocks, whereas the result in Case (ii) extends a result of Gut [ Ann. Probab., 6, 469-482 (1978)] to the bockwise M-dependent setting. The sharpness of the results is illustrated by some examples.
引用
收藏
页码:1923 / 1934
页数:12
相关论文
共 14 条
[1]  
Chow Y. S., 1997, Probability theory. Independence, interchangeability, martingales, Vthird
[2]  
Gaposhkin V F, 1995, THEOR PROBAB APPL, V39, P667
[3]   MARCINKIEWICZ LAWS AND CONVERGENCE RATES IN LAW OF LARGE NUMBERS FOR RANDOM-VARIABLES WITH MULTIDIMENSIONAL INDEXES [J].
GUT, A .
ANNALS OF PROBABILITY, 1978, 6 (03) :469-482
[4]  
LOEVE M, 1977, PROBABILITY THEORY, V1
[5]   STRONG LIMIT-THEOREMS FOR BLOCKWISE META-DEPENDENT AND BLOCKWISE QUASIORTHOGONAL SEQUENCES OF RANDOM-VARIABLES [J].
MORICZ, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (04) :709-715
[6]   STRONG LAWS OF LARGE NUMBERS FOR ARRAYS OF ORTHOGONAL RANDOM ELEMENTS IN BANACH-SPACES [J].
MORICZ, F ;
SU, KL ;
TAYLOR, RL .
ACTA MATHEMATICA HUNGARICA, 1994, 65 (01) :1-16
[7]   Strong laws for blockwise M-dependent random fields [J].
Moricz, Ferenc ;
Stadtmueller, Ulrich ;
Thalmaier, Monika .
JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (03) :660-671
[8]   On the strong law of large numbers under rearrangements for sequences of blockwise orthogonal random elements in Banach spaces [J].
Nguyen Van Quang ;
Le Van Thanh .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (04) :349-357
[9]  
Quang NV., 2005, PROBAB MATH STAT-POL, V25, P385
[10]   On almost sure and mean convergence of normed double sums of banach space valued random elements [J].
Rosalsky, Andrew ;
Thanh, Le Van .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (04) :895-911