Quantum fluctuation theorem for heat exchange in the strong coupling regime

被引:50
作者
Nicolin, Lena [1 ]
Segal, Dvira [1 ]
机构
[1] Univ Toronto, Chem Phys Theory Grp, Dept Chem, Toronto, ON M5S 3H6, Canada
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 16期
基金
加拿大自然科学与工程研究理事会;
关键词
MOLECULAR JUNCTIONS; DISSIPATION; TRANSPORT; SYSTEM;
D O I
10.1103/PhysRevB.84.161414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study quantum heat exchange in a multistate impurity coupled to two thermal reservoirs. Allowing for strong system-bath interactions, we show that a steady-state heat-exchange fluctuation theorem holds, though the dynamical processes nonlinearly involve the two reservoirs. We accomplish a closed expression for the cumulant generating function, and use it obtain the heat current and its cumulants in a nonlinear thermal junction, the two-bath spin-boson model.
引用
收藏
页数:4
相关论文
共 26 条
[1]   The fluctuation theorem for currents in open quantum systems [J].
Andrieux, D. ;
Gaspard, P. ;
Monnai, T. ;
Tasaki, S. .
NEW JOURNAL OF PHYSICS, 2009, 11
[2]   QUANTUM OHMIC DISSIPATION - PARTICLE IN AN ASYMMETRIC DOUBLE-WELL POTENTIAL [J].
ASLANGUL, C ;
POTTIER, N ;
SAINTJAMES, D .
JOURNAL DE PHYSIQUE, 1986, 47 (05) :757-766
[3]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[4]   Colloquium: Quantum fluctuation relations: Foundations and applications [J].
Campisi, Michele ;
Haenggi, Peter ;
Talkner, Peter .
REVIEWS OF MODERN PHYSICS, 2011, 83 (03) :771-791
[5]   Fluctuation Theorems for Continuously Monitored Quantum Fluxes [J].
Campisi, Michele ;
Talkner, Peter ;
Haenggi, Peter .
PHYSICAL REVIEW LETTERS, 2010, 105 (14)
[6]   NONINTERACTING-BLIP APPROXIMATION FOR A 2-LEVEL SYSTEM COUPLED TO A HEAT BATH [J].
DEKKER, H .
PHYSICAL REVIEW A, 1987, 35 (03) :1436-1437
[7]   Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems [J].
Esposito, Massimiliano ;
Harbola, Upendra ;
Mukamel, Shaul .
REVIEWS OF MODERN PHYSICS, 2009, 81 (04) :1665-1702
[8]   PROBABILITY OF 2ND LAW VIOLATIONS IN SHEARING STEADY-STATES [J].
EVANS, DJ ;
COHEN, EGD ;
MORRISS, GP .
PHYSICAL REVIEW LETTERS, 1993, 71 (15) :2401-2404
[9]   The fluctuation theorem [J].
Evans, DJ ;
Searles, DJ .
ADVANCES IN PHYSICS, 2002, 51 (07) :1529-1585
[10]   Counting statistics of non-markovian quantum stochastic processes [J].
Flindt, Christian ;
Novotny, Tomas ;
Braggio, Alessandro ;
Sassetti, Maura ;
Jauho, Antti-Pekka .
PHYSICAL REVIEW LETTERS, 2008, 100 (15)