FPGA Implementation of Binarized Perceptron Learning Hardware Using CMOS Invertible Logic

被引:0
作者
Shin, Duckgyu [1 ]
Onizawa, Naoya [1 ]
Hanyu, Takahiro [1 ]
机构
[1] Tohoku Univ, Res Inst Elect Commun, Sendai, Miyagi, Japan
来源
2019 26TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS) | 2019年
关键词
Stochastic computing; Hamiltonian; Spin gate;
D O I
10.1109/icecs46596.2019.8965097
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces FPGA implementation of learning hardware for a neural network. The proposed learning hardware is designed using CMOS invertible logic that realizes probabilistic bidirectional (forward and backward) operations with basic CMOS logic gates. The backward operation based on CMOS invertible logic makes hardware-based learning possible because the loss function is not required. For a simple case study, the proposed learning hardware trains using simplified a MNIST data set for a 25-input binarized perceptron. Our FPGA implementation on Digilent Genesys 2 achieves around 100 x faster operating speed than that using a traditional learning algorithm on software while maintaining the same recognition accuracy of 99%.
引用
收藏
页码:115 / 116
页数:2
相关论文
共 5 条
[1]  
Courbariaux M., 2016, ARXIV160202830
[2]  
Gallant S I, 1990, IEEE Trans Neural Netw, V1, P179, DOI 10.1109/72.80230
[3]  
LeCun Yann, MNIST DATABASE HANDW
[4]   Efficient CMOS Invertible Logic Using Stochastic Computing [J].
Smithson, Sean C. ;
Onizawa, Naoya ;
Meyer, Brett H. ;
Gross, Warren J. ;
Hanyu, Takahiro .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (06) :2263-2274
[5]   Ground-state spin logic [J].
Whitfield, J. D. ;
Faccin, M. ;
Biamonte, J. D. .
EPL, 2012, 99 (05)