BLOW-UP OF SOLUTIONS TO A VISCOELASTIC WAVE EQUATION WITH NONLOCAL DAMPING

被引:0
作者
Li, Donghao [1 ]
Zhang, Hongwei [1 ]
Liu, Shuo [1 ]
Hu, Qingiyng [1 ]
机构
[1] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
来源
EVOLUTION EQUATIONS AND CONTROL THEORY | 2022年 / 11卷 / 06期
基金
中国国家自然科学基金;
关键词
Viscoelastic wave equation; initial boundary value problem; nonlocal damping; blow-up; LONG-TIME DYNAMICS; GLOBAL NONEXISTENCE; EXPONENTIAL STABILITY; EVOLUTION-EQUATIONS; PLATE EQUATION; ATTRACTORS; EXISTENCE; MODEL; THEOREMS; INFINITY;
D O I
10.3934/eect.2022009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The viscoelastic wave equation with nonlinear nonlocal weak damping is considered. The local existence of solutions is established. Under arbitrary positive initial energy, a finite-time blow-up result is proved by a new modified concavity method.
引用
收藏
页码:2017 / 2031
页数:15
相关论文
共 37 条
  • [1] Stability results of coupled wave models with locally memory in a past history framework via nonsmooth coefficients on the interface
    Akil, Mohammad
    Badawi, Haidar
    Nicaise, Serge
    Wehbe, Ali
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 6950 - 6981
  • [2] Alshin A. B., 2011, GRUYTER SER NONLINEA, V15
  • [3] [Anonymous], 1997, DIFFER INTEGRAL EQU
  • [4] Blow up at infinity of solutions of polyharmonic Kirchhoff systems
    Autuori, G.
    Colasuonno, F.
    Pucci, P.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (2-4) : 379 - 395
  • [5] Global Nonexistence for Nonlinear Kirchhoff Systems
    Autuori, Giuseppina
    Pucci, Patrizia
    Salvatori, Maria Cesarina
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) : 489 - 516
  • [6] On nonlinear wave equations with degenerate damping and source terms
    Barbu, V
    Lasiecka, I
    Rammaha, MA
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (07) : 2571 - 2611
  • [7] Blow-up of generalized solutions to wave equations with nonlinear degenerate damping and source terms
    Barbu, Viorel
    Lasiecka, Irena
    Rammaha, Mohammad A.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) : 995 - 1021
  • [8] Cavalcanti MM, 2004, DIFFER INTEGRAL EQU, V17, P495
  • [9] Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Silva, M. A. Jorge
    Narciso, V
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 290 : 197 - 222
  • [10] Exponential stability for the wave model with localized memory in a past history framework
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Jorge Silva, M. A.
    de Souza Franco, A. Y.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (11) : 6535 - 6584