Polar sets and relative dimension for generalized Brownian sheet

被引:0
作者
Li, Hui-qiong [1 ]
Chen, Zhen-long [1 ]
机构
[1] Zhejiang Gongshang Univ, Coll Stat & Math, Hangzhou 310035, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2007年 / 23卷 / 04期
关键词
generalized Brownian sheet; polar set; Hausdorff dimension; packing dimension;
D O I
10.1007/s10255-007-0397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (W) over tilde (=) over cap {(W) over tilde (t); t is an element of R-+(N)} be a d-dimensional N-Parameter generalized Brownian Sheet. Necessary and sufficient conditions for a compact set E x F to be a polar set for (t, (W) over tilde (t)) are proved. It is also proved that if 2N <= alpha d, then for any compact set E subset of R->(N), d - 2/alpha DimE <= inf{dimF : F is an element of B(R-d), P{(W) over tilde (E) boolean AND F not equal 0} > 0} <= d - 2/beta Dim E, and if 2N > alpha d, then for any compact set F subset of R-d \ {0}, alpha/2 (d - DimF) <= inf{dimE : E is an element of B(R->(N)), P{(W) over tilde (E) boolean AND F not equal 0} > 0} <= beta/2(d - Dim F), where B(R-d) and B(R->(N)) denote the Borel sigma-algebra in R-d and in R->(N) respectively, dim and Dim are Hausdorff dimension and Packing dimension respectively.
引用
收藏
页码:579 / 592
页数:14
相关论文
共 23 条
  • [1] ADLER RJ, 1981, GEOMENTRY RANDOM FIE
  • [2] Packing dimension and Cartesian products
    Bishop, CJ
    Peres, Y
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (11) : 4433 - 4445
  • [3] CHEN ZL, 1997, J MATH PRC, V17, P373
  • [4] EHM W, 1981, Z WAHRSCHEINLICHKEIT, V56, P195, DOI 10.1007/BF00535741
  • [5] Falconer K., 2004, FRACTAL GEOMETRY MAT
  • [6] MEASURES OF HAUSDORFF TYPE AND STABLE PROCESSES
    HAWKES, J
    [J]. MATHEMATIKA, 1978, 25 (50) : 202 - 212
  • [7] Kahane J P., 1983, Sem Anal Harm, Orsay, V38, P74
  • [8] Kahane J.-P., 1985, Cambridge Studies in Advanced Mathematics, VSecond
  • [9] Kakutani S., 1944, P IMP ACAD TOKYO, V20, P706
  • [10] KHOSHNEVISAN D., 1997, LECT NOTES MATH, V1655, P190