Parametric Identification of Abkowitz Model for Ship Maneuvering Motion by Using Partial Least Squares Regression

被引:15
|
作者
Yin Jian-Chuan [1 ,2 ]
Zou Zao-Jian [1 ,3 ]
Xu Feng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
[2] Dalian Maritime Univ, Nav Coll, Dalian 116026, Liaoning, Peoples R China
[3] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
partial least squares regression; Abkowitz model; parametric identification; ship maneuvering;
D O I
10.1115/1.4029827
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Partial least squares (PLS) regression is used for identifying the hydrodynamic derivatives in the Abkowitz model for ship maneuvering motion. To identify the dynamic characteristics in ship maneuvering motion, the derivatives of hydrodynamic model's outputs are set as the target output of the PLS identification model. To verify the effectiveness of PLS parametric identification method in processing data with high dimensionality and heavy multicollinearity, the identified results of the hydrodynamic derivatives from the simulated 20 deg/20 deg zigzag test are compared with the planar motion mechanism (PMM) test results. The performance of PLS regression is also compared with that of the conventional least squares (LS) regression using the same dataset. Simulation results show the satisfactory identification and generalization performances of PLS regression and its superiority in comparison with the LS method, which demonstrates its capability in processing measurement data with high dimensionality and heavy multicollinearity, especially in processing data with small sample size.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Local nonlinear least squares: Using parametric information in nonparametric regression
    Gozalo, P
    Linton, O
    JOURNAL OF ECONOMETRICS, 2000, 99 (01) : 63 - 106
  • [42] Parametric Identification for the Biased Ship Roll Motion Model Using Genocchi Polynomials
    Swaminathan, G.
    Hariharan, G.
    Mohiuddine, S. A.
    Tamilvanan, Kandhasamy
    Kabeto, Masho Jima
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [43] A partial least squares regression model based on variational quantum algorithm
    Hou, Yan-Yan
    Li, Jian
    Chen, Xiu-Bo
    Ye, Chong-Qiang
    LASER PHYSICS LETTERS, 2022, 19 (09)
  • [44] Kernel partial least-squares regression
    Bai Yifeng
    Xiao Han
    Yu Long
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1231 - +
  • [45] Black-box modeling of ship maneuvering motion using multi-output least-squares support vector regression based on optimal mixed kernel function
    Jiang, Lichao
    Shang, Xiaobing
    Jin, Bao
    Zhang, Zhi
    Zhang, Wen
    OCEAN ENGINEERING, 2024, 293
  • [46] PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL
    GELADI, P
    KOWALSKI, BR
    ANALYTICA CHIMICA ACTA, 1986, 185 : 1 - 17
  • [47] Partial least squares regression with multiple domains
    Mikulasek, Bianca
    Fonseca Diaz, Valeria
    Gabauer, David
    Herwig, Christoph
    Nikzad-Langerodi, Ramin
    JOURNAL OF CHEMOMETRICS, 2023, 37 (05)
  • [48] Fast Multiway Partial Least Squares Regression
    Camarrone, Flavio
    Van Hulle, Marc M.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (02) : 433 - 443
  • [49] Parameter identification for symbolic regression using nonlinear least squares
    Kommenda, Michael
    Burlacu, Bogdan
    Kronberger, Gabriel
    Affenzeller, Michael
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2020, 21 (03) : 471 - 501
  • [50] Ensemble methods and partial least squares regression
    Mevik, BH
    Segtnan, VH
    Næs, T
    JOURNAL OF CHEMOMETRICS, 2004, 18 (11) : 498 - 507