Parametric Identification of Abkowitz Model for Ship Maneuvering Motion by Using Partial Least Squares Regression

被引:15
|
作者
Yin Jian-Chuan [1 ,2 ]
Zou Zao-Jian [1 ,3 ]
Xu Feng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai 200240, Peoples R China
[2] Dalian Maritime Univ, Nav Coll, Dalian 116026, Liaoning, Peoples R China
[3] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
partial least squares regression; Abkowitz model; parametric identification; ship maneuvering;
D O I
10.1115/1.4029827
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Partial least squares (PLS) regression is used for identifying the hydrodynamic derivatives in the Abkowitz model for ship maneuvering motion. To identify the dynamic characteristics in ship maneuvering motion, the derivatives of hydrodynamic model's outputs are set as the target output of the PLS identification model. To verify the effectiveness of PLS parametric identification method in processing data with high dimensionality and heavy multicollinearity, the identified results of the hydrodynamic derivatives from the simulated 20 deg/20 deg zigzag test are compared with the planar motion mechanism (PMM) test results. The performance of PLS regression is also compared with that of the conventional least squares (LS) regression using the same dataset. Simulation results show the satisfactory identification and generalization performances of PLS regression and its superiority in comparison with the LS method, which demonstrates its capability in processing measurement data with high dimensionality and heavy multicollinearity, especially in processing data with small sample size.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Active Appearance Model Search Using Partial Least Squares Regression
    Ge, Yongxin
    Min, Chen
    Jaaersand, Martin
    Yang, Dan
    2015 VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2015,
  • [12] Parametric estimation of ship maneuvering motion with integral sample structure for identification
    Cao Jian
    Zhuang Jiayuan
    Xu Feng
    Yin Jianchuan
    Zou Zaojian
    Yu Hao
    Xiao Tao
    Yang Luchun
    APPLIED OCEAN RESEARCH, 2015, 52 : 212 - 221
  • [13] Partial least squares regression
    deJong, S
    Phatak, A
    RECENT ADVANCES IN TOTAL LEAST SQUARES TECHNIQUES AND ERRORS-IN-VARIABLES MODELING, 1997, : 25 - 36
  • [14] Parametric identification for nonlinear ship maneuvering
    Bhattacharyya, S. K.
    Haddara, M. R.
    JOURNAL OF SHIP RESEARCH, 2006, 50 (03): : 197 - 207
  • [15] Partial Least-squares Regression for Identification of Liquid Materials
    Li, Wei
    Zhong, Yu
    Zhang, Yu
    Yu, Daoyang
    Sun, Bai
    Li, Minqiang
    Liu, Jinhuai
    2010 SYMPOSIUM ON SECURITY DETECTION AND INFORMATION PROCESSING, 2010, 7 : 130 - 134
  • [16] Tide modeling using partial least squares regression
    Onuwa Okwuashi
    Christopher Ndehedehe
    Hosanna Attai
    Ocean Dynamics, 2020, 70 : 1089 - 1101
  • [17] Using Partial Least Squares Regression in Lifetime Analysis
    Mdimagh, Intissar
    Benammou, Salwa
    NEW PERSPECTIVES IN STATISTICAL MODELING AND DATA ANALYSIS, 2011, : 291 - 299
  • [18] Tide modeling using partial least squares regression
    Okwuashi, Onuwa
    Ndehedehe, Christopher
    Attai, Hosanna
    OCEAN DYNAMICS, 2020, 70 (08) : 1089 - 1101
  • [19] Voice Conversion Using Partial Least Squares Regression
    Helander, Elina
    Virtanen, Tuomas
    Nurminen, Jani
    Gabbouj, Moncef
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (05): : 912 - 921
  • [20] Using partial least-squares regression to develop a model of rice evapotranspiration
    Fu, Q
    Wang, LK
    Song, L
    Xing, ZX
    JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 : 42 - 42