BlastR-fast and accurate database searches for non-coding RNAs

被引:23
|
作者
Bussotti, Giovanni [1 ,2 ]
Raineri, Emanuele [1 ,2 ,3 ]
Erb, Ionas [1 ,2 ]
Zytnicki, Matthias [1 ,2 ,4 ]
Wilm, Andreas [5 ]
Beaudoing, Emmanuel [1 ,2 ,6 ]
Bucher, Philipp [7 ,8 ]
Notredame, Cedric [1 ,2 ]
机构
[1] CRG, Bioinformat & Genom Program, Barcelona 08003, Spain
[2] UPF, Barcelona 08003, Spain
[3] CNAG Ctr Nacl Anal Genom, E-08028 Barcelona, Spain
[4] URGI INRA Versailles, Dept Plant Breeding & Genet, F-78026 Versailles, France
[5] Univ Coll Dublin, Conway Inst Biomol & Biomed Sci, Dublin 4, Ireland
[6] Univ Lausanne, Ctr Integrat Genom, Genom Technol Facil, CH-1015 Lausanne, Switzerland
[7] Ecole Polytech Fed Lausanne, ISREC, Sch Life Sci, CH-1015 Lausanne, Switzerland
[8] SIB, CH-1015 Lausanne, Switzerland
基金
新加坡国家研究基金会;
关键词
SECONDARY STRUCTURE; SEQUENCE ALIGNMENT; NUCLEOTIDE; IDENTIFICATION; SUBSTITUTION; ALGORITHM; EVOLUTION; HOMOLOGS; ELEMENTS; MODELS;
D O I
10.1093/nar/gkr335
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present and validate BlastR, a method for efficiently and accurately searching non-coding RNAs. Our approach relies on the comparison of di-nucleotides using BlosumR, a new log-odd substitution matrix. In order to use BlosumR for comparison, we recoded RNA sequences into protein-like sequences. We then showed that BlosumR can be used along with the BlastP algorithm in order to search non-coding RNA sequences. Using Rfam as a gold standard, we benchmarked this approach and show BlastR to be more sensitive than BlastN. We also show that BlastR is both faster and more sensitive than BlastP used with a single nucleotide log-odd substitution matrix. BlastR, when used in combination with WU-BlastP, is about 5% more accurate than WU-BlastN and about 50 times slower. The approach shown here is equally effective when combined with the NCBI-Blast package. The software is an open source freeware available from www.tcoffee.org/blastr.html.
引用
收藏
页码:6886 / 6895
页数:10
相关论文
共 50 条
  • [41] Non-coding RNAs and retroviruses
    Zhang, Xu
    Ma, Xiancai
    Jing, Shuliang
    Zhang, Hui
    Zhang, Yijun
    RETROVIROLOGY, 2018, 15
  • [42] Non-Coding RNAs in Schizophrenia
    Wahlestedt, Claes
    BIOLOGICAL PSYCHIATRY, 2010, 67 (09) : 21S - 21S
  • [43] Non-coding RNAs: An Introduction
    Yang, Jennifer X.
    Rastetter, Raphael H.
    Wilhelm, Dagmar
    NON-CODING RNA AND THE REPRODUCTIVE SYSTEM, 2016, 886 : 13 - 32
  • [44] Non-coding RNAs and Autophagy
    Yao, Honghong
    Han, Bing
    Zhang, Yuan
    Shen, Ling
    Huang, Rongrong
    AUTOPHAGY: BIOLOGY AND DISEASES: BASIC SCIENCE, 2019, 1206 : 199 - 220
  • [45] Non-Coding RNAs in Retinoblastoma
    Plousiou, Meropi
    Vannini, Ivan
    FRONTIERS IN GENETICS, 2019, 10
  • [46] Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers
    Klinge, Carolyn M.
    ENDOCRINE-RELATED CANCER, 2018, 25 (04) : R259 - R282
  • [47] FastR: Fast database search tool for non-coding RNA
    Bafna, V
    Zhang, SJ
    2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 52 - 61
  • [48] Coding and non-coding RNAs & Mammalian development
    Sampath, Karuna
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2015, 47-48 : 1 - 2
  • [49] New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs
    Mahjoubin-Tehran, Maryam
    Rezaei, Samaneh
    Jesmani, Amin
    Birang, Nafise
    Morshedi, Korosh
    Khanbabaei, Hashem
    Khan, Haroon
    Piranviseh, Ashkan
    Nejati, Majid
    Aschner, Michael
    Mirzaei, Hamed
    BIOMEDICINE & PHARMACOTHERAPY, 2021, 140
  • [50] NoncoRNA: a database of experimentally supported non-coding RNAs and drug targets in cancer
    Li, Lulu
    Wu, Pengfei
    Wang, Zhenyu
    Meng, Xiangqi
    Zha, Caijun
    Li, Ziwei
    Qi, Tengfei
    Zhang, Yangong
    Han, Bo
    Li, Shupeng
    Jiang, Chuanlu
    Zhao, Zheng
    Cai, Jinquan
    JOURNAL OF HEMATOLOGY & ONCOLOGY, 2020, 13 (01)