STABILITY AND CONTROLLABILITY OF A WAVE EQUATION WITH DYNAMICAL BOUNDARY CONTROL

被引:5
作者
Rao, Bopeng [1 ]
Toufayli, Laila [2 ,3 ]
Wehbe, Ali [2 ,3 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] Univ Libanaise, EDST, Beirut, Lebanon
[3] Univ Libanaise, Fac Sci 1, Equipe EDP AN, Beirut, Lebanon
关键词
Wave equation; dynamical control; exact controllability; polynomial decay rate; ENERGY DECAY-RATE; PLATES;
D O I
10.3934/mcrf.2015.5.305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider the stabilization and the exact controllability of a wave equation with dynamical boundary control. We first prove the strong stability of the system and establish a polynomial decay rate for smooth solutions. We next show the exact controllability by means of a singular dynamical boundary control.
引用
收藏
页码:305 / 320
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 1968, Problemes Aux Limites Non-Homogenes et Applications
[2]  
[Anonymous], 1999, Semigroups Associated with Dissipative Systems
[3]   TAUBERIAN-THEOREMS AND STABILITY OF ONE-PARAMETER SEMIGROUPS [J].
ARENDT, W ;
BATTY, CJK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :837-852
[4]   NOTE ON WEAK STABILIZABILITY OF CONTRACTION SEMIGROUPS [J].
BENCHIMOL, CD .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (03) :373-379
[5]  
Brezis H, 1983, ANAL FONCTIONELLE TH
[6]   UNIQUE CONTINUATION FOR ELLIPTIC-OPERATORS - A GEOMETRIC VARIATIONAL APPROACH [J].
GAROFALO, N ;
LIN, FH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (03) :347-366
[7]  
Huang F., 1985, Ann. Differ. Equ., V1, P43
[8]  
Komornik V., 1994, Exact Controllability and Stabilization. The Multiplier Method
[9]  
Lions J.-L, 1988, CONTROLABILITE EXACT, V1
[10]   EXACT CONTROLLABILITY, STABILIZATION AND PERTURBATIONS FOR DISTRIBUTED SYSTEMS [J].
LIONS, JL .
SIAM REVIEW, 1988, 30 (01) :1-68