Nonlocal boxes for networks

被引:14
作者
Bancal, Jean-Daniel [1 ,2 ]
Gisin, Nicolas [1 ,3 ]
机构
[1] Univ Geneva, Grp Appl Phys, CH-1211 Geneva 4, Switzerland
[2] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France
[3] Schaffhausen Inst Technol SIT, Geneva, Switzerland
关键词
Quantum theory;
D O I
10.1103/PhysRevA.104.052212
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonlocal boxes are conceptual tools that capture the essence of the phenomenon of quantum nonlocality, central to modern quantum theory and quantum technologies. We introduce network nonlocal boxes tailored for quantum networks under the natural assumption that these networks connect independent sources and do not allow signaling. Hence, these boxes satisfy the no-signaling and independence principle. For the case of boxes without inputs, connecting pairs of bipartite sources and producing binary outputs, we prove that the sources root and boxes producing local random outputs and maximal two-box correlations, i.e., E2 = 2 - 1, E2o = 1, are essentially unique.
引用
收藏
页数:6
相关论文
共 28 条
  • [1] Maximal qubit violation of n-locality inequalities in a star-shaped quantum network
    Andreoli, Francesco
    Carvacho, Gonzalo
    Santodonato, Luca
    Chaves, Rafael
    Sciarrino, Fabio
    [J]. NEW JOURNAL OF PHYSICS, 2017, 19
  • [2] Characterizing the Nonlocal Correlations Created via Entanglement Swapping
    Branciard, C.
    Gisin, N.
    Pironio, S.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (17)
  • [3] Bilocal versus nonbilocal correlations in entanglement-swapping experiments
    Branciard, Cyril
    Rosset, Denis
    Gisin, Nicolas
    Pironio, Stefano
    [J]. PHYSICAL REVIEW A, 2012, 85 (03):
  • [4] Unifying Framework for Relaxations of the Causal Assumptions in Bell's Theorem
    Chaves, R.
    Kueng, R.
    Brask, J. B.
    Gross, D.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (14)
  • [5] Polynomial Bell Inequalities
    Chaves, Rafael
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (01)
  • [6] Entropic approach to local realism and noncontextuality
    Chaves, Rafael
    Fritz, Tobias
    [J]. PHYSICAL REVIEW A, 2012, 85 (03)
  • [7] Causal compatibility inequalities admitting quantum violations in the triangle structure
    Fraser, Thomas C.
    Wolfe, Elie
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)
  • [8] Beyond Bell's Theorem II: Scenarios with Arbitrary Causal Structure
    Fritz, Tobias
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (02) : 391 - 434
  • [9] Beyond Bell's theorem: correlation scenarios
    Fritz, Tobias
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [10] Constraints on nonlocality in networks from no-signaling and independence
    Gisin, Nicolas
    Bancal, Jean-Daniel
    Cai, Yu
    Remy, Patrick
    Tavakoli, Armin
    Cruzeiro, Emmanuel Zambrini
    Popescu, Sandu
    Brunner, Nicolas
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)