Soliton, positon and negaton solutions to a Schrodinger self-consistent source equation

被引:68
作者
Ma, WX [1 ]
机构
[1] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
Darboux transformation; self-consistent source equation; solitons; positons; negatons;
D O I
10.1143/JPSJ.72.3017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Darboux transformation is furnished for a Schrodinger self-consistent source equation, along with a solution formula. Soliton, positon and negaton solutions to the Schrodinger self-consistent source equation are further constructed. The resulting solutions resemble those of the KdV equation with self-consistent sources, but the space and time variables are involved in a slightly different manner.
引用
收藏
页码:3017 / 3019
页数:3
相关论文
共 12 条
[1]   SOLITON HIERARCHIES WITH SOURCES AND LAX REPRESENTATION FOR RESTRICTED FLOWS [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
INVERSE PROBLEMS, 1993, 9 (02) :201-215
[2]   INTEGRABLE PONDEROMOTIVE SYSTEM - CAVITONS ARE SOLITONS [J].
KAUP, DJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (18) :2063-2066
[3]   SOLUTION OF AN INITIAL BOUNDARY-VALUE PROBLEM FOR COUPLED NONLINEAR-WAVES [J].
LEON, J ;
LATIFI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (08) :1385-1403
[4]   Binary symmetry constraints of N-wave interaction equations in 1+1 and 2+1 dimensions [J].
Ma, WX ;
Zhou, ZX .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) :4345-4382
[5]   AN EXPLICIT SYMMETRY CONSTRAINT FOR THE LAX PAIRS AND THE ADJOINT LAX PAIRS OF AKNS SYSTEMS [J].
MA, WX ;
STRAMPP, W .
PHYSICS LETTERS A, 1994, 185 (03) :277-286
[6]   CAPTURE AND CONFINEMENT OF SOLITONS IN NONLINEAR INTEGRABLE SYSTEMS [J].
MELNIKOV, VK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 120 (03) :451-468
[7]   EXACT-SOLUTIONS OF THE KORTEWEG DE VRIES EQUATION WITH A SELF-CONSISTENT SOURCE [J].
MELNIKOV, VK .
PHYSICS LETTERS A, 1988, 128 (09) :488-492
[8]   INTEGRATION OF THE KORTEWEG-DEVRIES EQUATION WITH A SOURCE [J].
MELNIKOV, VK .
INVERSE PROBLEMS, 1990, 6 (02) :233-246
[9]   Negaton and positon solutions of the KdV and mKdV hierarchy [J].
Rasinariu, C ;
Sukhatme, U ;
Khare, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (08) :1803-1823
[10]   Integration of the soliton hierarchy with self-consistent sources [J].
Zeng, YB ;
Ma, WX ;
Lin, RL .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (08) :5453-5489