Robust Beamforming for Active Reconfigurable Intelligent Omni-Surface in Vehicular Communications

被引:58
作者
Chen, Yuanbin [1 ]
Wang, Ying [1 ]
Wang, Zhaocheng [2 ,3 ]
Zhang, Ping [1 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Peng Cheng Lab, Dept Broadband Commun, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Fading channels; Array signal processing; Wireless communication; Resource management; Wireless sensor networks; Tuning; Training; Reconfigurable intelligent omni-surface; vehicular communications; resource allocation; robust beamforming optimization; CHANNEL ESTIMATION; TRANSMISSION; OPTIMIZATION; APPROXIMATION; FRAMEWORK;
D O I
10.1109/JSAC.2022.3196095
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Two key impediments to reconfigurable intelligent surface (RIS)-aided vehicular communications are, respectively, the double fading experienced by the signal on RIS-aided cascaded links and the high-mobility-induced intractability of acquiring channel state information (CSI). To overcome these challenges, a novel kind of RIS is presented in this paper, namely active reconfigurable intelligent omni-surface (RIOS), each element of which is supported by active loads, that concurrently transmits and reflects the incident signal amplified rather than just reflecting it as compared to the case of a passive reflecting-only RIS. We consider the use of an active RIOS to a vehicular communication system for mitigating double fading effect. Specifically, the active RIOS is mounted on the vehicle window to enhance transmission for users in the vehicle and for adjacent vehicles. We aim to jointly optimize the transmit precoding matrix at the base station (BS) and RIOS coefficient matrices to minimize the BS's transmit power relying exclusively upon the imperfect knowledge of the large-scale CSI. To significantly relax the frequency of channel information updates, initially an efficient transmission protocol is put forward to reap the high active RIOS beamforming gain with low channel training overhead by appropriately tailoring the time-scale of CSI acquisition. Then, two algorithms, namely an alternating optimization (AO)-based algorithm and a constrained stochastic successive convex approximation (CSSCA)-based algorithm, are developed to tackle with the investigated resource allocation problem, whose pros and cons are elaborated, respectively. Simulation results substantiate the significant performance improvement of active RIOS as well as determine the validity and robustness of our proposed algorithms over various benchmark schemes.
引用
收藏
页码:3086 / 3103
页数:18
相关论文
共 43 条
[1]   Secure Vehicular Communications Through Reconfigurable Intelligent Surfaces [J].
Ai, Yun ;
de Figueiredo, Felipe A. P. ;
Kong, Long ;
Cheffena, Michael ;
Chatzinotas, Symeon ;
Ottersten, Bjorn .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (07) :7272-7276
[2]  
[Anonymous], 2016, 3GPP TR 36.885 V14.0.0
[3]  
[Anonymous], 2019, 3GPP TR 38.885 v16.0.0
[4]  
[Anonymous], 2012, MATRIX COOKBOOK
[5]   Intelligent Reflecting Surface Versus Decode-and-Forward: How Large Surfaces are Needed to Beat Relaying? [J].
Bjornson, Emil ;
Ozdogan, Ozgecan ;
Larsson, Erik G. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) :244-248
[6]   Large-Scale MIMO Relaying Techniques for Physical Layer Security: AF or DF? [J].
Chen, Xiaoming ;
Lei, Lei ;
Zhang, Huazi ;
Yuen, Chau .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (09) :5135-5146
[7]   Robust Transmission for Reconfigurable Intelligent Surface Aided Millimeter Wave Vehicular Communications With Statistical CSI [J].
Chen, Yuanbin ;
Wang, Ying ;
Jiao, Lei .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (02) :928-944
[8]   QoS-Driven Spectrum Sharing for Reconfigurable Intelligent Surfaces (RISs) Aided Vehicular Networks [J].
Chen, Yuanbin ;
Wang, Ying ;
Zhang, Jiayi ;
Di Renzo, Marco .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (09) :5969-5985
[9]   Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead [J].
Di Renzo, Marco ;
Zappone, Alessio ;
Debbah, Merouane ;
Alouini, Mohamed-Slim ;
Yuen, Chau ;
de Rosny, Julien ;
Tretyakov, Sergei .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (11) :2450-2525
[10]   Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison [J].
Di Renzo, Marco ;
Ntontin, Konstantinos ;
Song, Jian ;
Danufane, Fadil H. ;
Qian, Xuewen ;
Lazarakis, Fotis ;
De Rosny, Julien ;
Dinh-Thuy Phan-Huy ;
Simeone, Osvaldo ;
Zhang, Rui ;
Debbah, Meroaune ;
Lerosey, Geoffroy ;
Fink, Mathias ;
Tretyakov, Sergei ;
Shamai, Shlomo .
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 :798-807