Synthesis and Characterization of Poly(Styrene-co-Butyl Acrylate)/Clay Nanocomposite Latexes in Miniemulsion by AGET ATRP

被引:40
作者
Hatami, Leila [2 ]
Haddadi-Asl, Vahid [1 ]
Roghani-Mamaqani, Hossein [1 ]
Ahmadian-Alam, Leila [2 ]
Salami-Kalajahi, Mehdi [1 ]
机构
[1] Amirkabir Univ Technol, Dept Polymer Engn & Color Technol, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Chem, Tehran, Iran
关键词
TRANSFER RADICAL POLYMERIZATION; SILICATE NANOCOMPOSITES; BLOCK-COPOLYMERS; LAYERED-SILICATE; CLAY; POLYSTYRENE; HOMOPOLYMERS; SURFACTANTS; PARTICLES; STYRENE;
D O I
10.1002/pc.21115
中图分类号
TB33 [复合材料];
学科分类号
摘要
Polymer/clay nanocomposite latexes in the form of positively charged nanoparticles were synthesized by a newly developed initiating system, activators generated by electron transfer (AGET), which has been employed in atom transfer radical polymerization (ATRP). These clay-dispersed latexes were synthesized using AGET ATRP of styrene and butyl acrylate in a miniemulsion system in which, ascorbic acid as a reducing agent was added drop wise to reduce termination reactions. Particle size and particle size distribution of resulted nanocomposite latexes were characterized by dynamic light scattering (DLS). These latexes were in the range of 138 to 171 nm in size. Gel permeation chromatography (GPC) was used to characterize the molecular weight and molecular weight distribution of the resultant copolymer nanocomposites. GPC traces showed that polymers of narrow molecular weight distribution and low Polydispersity Index (PDI) have been synthesized; this clearly shows ATRP reaction is conducted successfully. By increasing nanoclay content, molecular weight of the nanocomposites decreases. The presence of the nanofiller increases the thermal stability of the nanocomposites as investigated by thermogravimetric Analysis (TGA). Glass transition temperature of nanocomposites increases compared with the neat copolymer which was studied by differential scanning calorimetry (DSC). scanning electron microscope (SEM) showed sphere morphology of polymer particles synthesized by miniemulsion polymerization. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that mixed intercalated and exfoliated morphology is obtained. POLYM. COMPOS., 32:967-975, 2011. (C) 2011 Society of Plastics Engineers
引用
收藏
页码:967 / 975
页数:9
相关论文
共 44 条
[1]   Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process [J].
Chiefari, J ;
Chong, YK ;
Ercole, F ;
Krstina, J ;
Jeffery, J ;
Le, TPT ;
Mayadunne, RTA ;
Meijs, GF ;
Moad, CL ;
Moad, G ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 1998, 31 (16) :5559-5562
[2]   Preparation and characterization of poly(ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants [J].
Costache, Marius C. ;
Heidecker, M. J. ;
Manias, E. ;
Wilkie, Charles A. .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2006, 17 (9-10) :764-771
[3]   High solids content waterborne acrylic/montmorillonite it nanocomposites by miniemulsion polymerization [J].
Diaconu, Gabriela ;
Paulis, Maria ;
Leiza, Jose R. .
MACROMOLECULAR REACTION ENGINEERING, 2008, 2 (01) :80-89
[4]   High-solids content waterborne polymer-clay nanocomposites [J].
Diaconu, Gabriela ;
Asua, Jose M. ;
Paulis, Maria ;
Leiza, Jose R. .
MACROMOLECULAR SYMPOSIA, 2007, 259 :305-317
[5]   Miniemulsion polymerization for synthesis of structured clay/polymer nanocomposites: Short review and recent advances [J].
Faucheu, Jenny ;
Gauthier, Catherine ;
Chazeau, Laurent ;
Cavaille, Jean-Yves ;
Mellon, Veronique ;
Bourgeat-Lami, Elodie .
POLYMER, 2010, 51 (01) :6-17
[6]   Flammability properties of polymer - Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites [J].
Gilman, JW ;
Jackson, CL ;
Morgan, AB ;
Harris, R ;
Manias, E ;
Giannelis, EP ;
Wuthenow, M ;
Hilton, D ;
Phillips, SH .
CHEMISTRY OF MATERIALS, 2000, 12 (07) :1866-1873
[7]   Theoretical phase diagrams of polymer/clay composites: The role of grafted organic modifiers [J].
Ginzburg, VV ;
Singh, C ;
Balazs, AC .
MACROMOLECULES, 2000, 33 (03) :1089-1099
[8]   New polymer synthesis by nitroxide mediated living radical polymerizations [J].
Hawker, CJ ;
Bosman, AW ;
Harth, E .
CHEMICAL REVIEWS, 2001, 101 (12) :3661-3688
[9]  
Kröll R, 2001, MACROMOL CHEM PHYS, V202, P645
[10]   Miniemulsions for nanoparticle synthesis [J].
Landfester, K .
COLLOID CHEMISTRY II, 2003, 227 :75-123