A box constrained gradient projection algorithm for compressed sensing

被引:7
作者
Broughton, R. L. [1 ]
Coope, I. D. [1 ]
Renaud, P. F. [1 ]
Tappenden, R. E. H. [1 ]
机构
[1] Univ Canterbury, Dept Math & Stat, Christchurch 1, New Zealand
关键词
Compressed sensing; Projected Barzilai-Borwein algorithm; Signal reconstruction; BARZILAI-BORWEIN METHOD; SPARSE RECONSTRUCTION; SIGNAL RECOVERY;
D O I
10.1016/j.sigpro.2011.03.003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new algorithm is presented which aims to solve problems from compressed sensing under-determined problems where the solution vector is known a priori to be sparse. Upper bounds on the solution vector are found so that the problem can be reformulated as a box-constrained quadratic programme. A sparse solution is sought using a Barzilai-Borwein type projection algorithm. New insight into the choice of step length is provided through a study of the special structure of the underlying problem together with upper bounds on the step length. Numerical experiments are conducted and results given, comparing this algorithm with a number of other current algorithms. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1985 / 1992
页数:8
相关论文
共 33 条
[1]   A Simple Proof of the Restricted Isometry Property for Random Matrices [J].
Baraniuk, Richard ;
Davenport, Mark ;
DeVore, Ronald ;
Wakin, Michael .
CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) :253-263
[2]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[5]  
Candes E., 2005, l1- magic: recovery of sparse signals via convex programming
[6]  
Candes E. J., 2006, P INT C MATH MADR SP, V3, P1433, DOI DOI 10.4171/022-3/69
[7]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[8]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[9]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[10]   NONCONVEX COMPRESSIVE SENSING AND RECONSTRUCTION OF GRADIENT-SPARSE IMAGES: RANDOM VS. TOMOGRAPHIC FOURIER SAMPLING [J].
Chartrand, Rick .
2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, :2624-2627