Weyl-type bounds for Steklov eigenvalues

被引:16
作者
Provenzano, Luigi [1 ]
Stubbe, Joachim [1 ]
机构
[1] Ecole Polytech Fed Lausanne, SB Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
关键词
Steklov eigenvalue problem; Laplace-Beltrami operator; Eigenvalue bounds; Weyl eigenvalue asymptotics; Riesz-means; min-max principle; distance to the boundary; tubular neighborhood; SPECTRAL STABILITY; INEQUALITIES; CONVERGENCE; MANIFOLDS; LAPLACIAN; OPERATORS;
D O I
10.4171/JST/250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present upper and lower bounds for Steklov eigenvalues for domains in RN+1 with C-2 boundary compatible with the Weyl asymptotics. In particular, we obtain sharp upper bounds on Riesz-means and the trace of corresponding Steklov heat kernel. The key result is a comparison of Steklov eigenvalues and Laplacian eigenvalues on the boundary of the domain by applying Pohozaev-type identities on an appropriate tubular neigborhood of the boundary and the min-max principle. Asymptotically sharp bounds then follow from bounds for Riesz-means of Laplacian eigenvalues.
引用
收藏
页码:349 / 377
页数:29
相关论文
共 39 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]   On a mixed Poincare-Steklov type spectral problem in a Lipschitz domain [J].
Agranovich, M. S. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2006, 13 (03) :239-244
[3]  
Ambrosio L, 2000, CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, P5
[4]  
Ambrosio L, 1996, J DIFFER GEOM, V43, P693
[5]  
[Anonymous], 1983, Grundlehren der Mathematischen Wissenschaften
[6]  
[Anonymous], 1995, CAMBRIDGE STUDIES AD
[7]   Bases and comparison results for linear elliptic eigenproblems [J].
Auchmuty, Giles .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (01) :394-406
[8]   Hardy's inequality and curvature [J].
Balinsky, A. ;
Evans, W. D. ;
Lewis, R. T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (02) :648-666
[9]  
Brezis H, 1983, Theory and applications
[10]  
BROOKS JN, 1989, MEM AM MATH SOC, V80, P1