Numerical solution of a Fredholm integro-differential equation modelling θ-neural networks

被引:21
作者
Jackiewicz, Z. [2 ]
Rahman, M. [1 ]
Welfert, B. D. [2 ]
机构
[1] Univ N Florida, Dept Math & Stat, Jacksonville, FL 32224 USA
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
Fredholm integro-differential equation; pseudospectral methods; piecewise linear approximation; polynomial approximation; rational approximation; collocation; Gaussian quadrature; neural networks;
D O I
10.1016/j.amc.2007.05.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose several approaches to the numerical solution of a new Fredholm integro-differential equations modelling neural networks. A solution strategy based on expansions onto standard cardinal basis functions and collocation is presented. Comparative numerical experiments illustrate specific advantages and drawbacks of the different approaches and are used to motivate alternate strategies. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:523 / 536
页数:14
相关论文
共 12 条
  • [1] The linear rational collocation method
    Baltensperger, R
    Berrut, JP
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 134 (1-2) : 243 - 258
  • [2] Berman A., 1987, NONNEGATIVE MATRICES
  • [3] SOLUTION OF VANDERMONDE SYSTEMS OF EQUATIONS
    BJORCK, A
    PEREYRA, V
    [J]. MATHEMATICS OF COMPUTATION, 1970, 24 (112) : 893 - &
  • [4] Davis P, 1984, Methods of Numerical Integration, VSecond
  • [5] HENRICI P., 1982, Essentials of Numerical Analysis with Pocket Calculator Demonstrations
  • [6] Higham N. J., 2002, ACCURACY STABILITY N
  • [7] HOPPENSTEADT FC, 1997, INTRO MATH NEURONS
  • [8] HOPPENSTEADT FC, 2003, LECT NOTES
  • [9] Numerical solution of a Fredholm integro-differential equation modelling neural networks
    Jackiewicz, Z
    Rahman, A
    Welfert, BD
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (3-4) : 423 - 432
  • [10] JONES J, 1995, ADV COMPUT MATH, V3, P265