Formation of High-Field Pinning Centers in Superconducting MgB2 Wires by Using High Hot Isostatic Pressure Process

被引:21
作者
Gajda, D. [1 ,2 ,5 ]
Morawski, A. [3 ]
Zaleski, A. J. [2 ,5 ]
Akdogan, M. [4 ]
Yetis, H. [4 ]
Karaboga, F. [4 ]
Cetner, T. [3 ]
Belenli, I. [4 ]
机构
[1] Int Lab High Magnet Fields & Low Temp, Gajowicka 95, PL-53421 Wroclaw, Poland
[2] Polish Acad Sci, Inst Low Temp & Struct Res, Okolna 2, PL-50422 Wroclaw, Poland
[3] Polish Acad Sci, Inst High Pressure Phys, Sokolowska 29-37, PL-01142 Warsaw, Poland
[4] Abant Izzet Baysal Univ, Dept Phys, TR-14280 Bolu, Turkey
[5] Polish Acad Sci, Ctr Adv Mat & Smart Struct, Okolna 2, PL-50950 Wroclaw, Poland
关键词
MgB2; wires; High fields pinning centers; Critical current density; CU-SHEATHED MGB2; MAGNESIUM; DENSITY; POWDER;
D O I
10.1007/s10948-017-4161-y
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper demonstrates the effects of hot isostatic pressure (HIP) on the structure and transport critical parameters of in situ MgB2 wires without a barrier. Our results show that only HIP and nano-boron allow the formation of more high-field pinning centers, which lead to the increase in critical current density (J (c)) at high applied magnetic fields. Nano-boron and annealing at a low pressure increase the J (c) in the low magnetic field. This indicates that nano-particles create more high-field pinning centers. In addition, the results show that nano-boron improves the connection between the grains. Scanning electron microscope results show that HIP increases the reaction rate between Mg and B, density, and homogeneity of the MgB2 material. Additionally, HIP allows to create a structure with small grains and voids and eliminates the significance of the number of voids. High isostatic pressure allows to obtain high J (c) of 10 A/mm(2) (at 4.2 K) in 10 T and increases irreversible magnetic field (B (irr)) and upper critical field (B (c2)). Measurements show that these wires have high critical temperature of 37 K.
引用
收藏
页码:3397 / 3402
页数:6
相关论文
共 27 条
[21]   Percolative superconductivity in Mg1-xB2 -: art. no. 167003 [J].
Sharma, PA ;
Hur, N ;
Horibe, Y ;
Chen, CH ;
Kim, BG ;
Guha, S ;
Cieplak, MZ ;
Cheong, SW .
PHYSICAL REVIEW LETTERS, 2002, 89 (16) :167003/1-167003/4
[22]   Enhanced critical current densities in Cu-sheathed MgB2 [J].
Strickland, NM ;
Buckley, RG ;
Otto, A .
CURRENT APPLIED PHYSICS, 2004, 4 (06) :688-692
[23]   Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering [J].
Takano, Y ;
Takeya, H ;
Fujii, H ;
Kumakura, H ;
Hatano, T ;
Togano, K ;
Kito, H ;
Ihara, H .
APPLIED PHYSICS LETTERS, 2001, 78 (19) :2914-2916
[24]   Overview of MgB2 superconductor applications [J].
Tomsic, Michael ;
Rindfleisch, Matthew ;
Yue, Jinji ;
McFadden, Kevin ;
Phillips, John ;
Sumption, Michael D. ;
Bhatia, Mohit ;
Bohnenstiehl, Scot ;
Collings, Edward W. .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2007, 4 (03) :250-259
[25]   Influence of crystalline boron powders on superconducting properties of C-doped internal Mg diffusion processed MgB2 wires [J].
Wang, Dongliang ;
Zhang, Xianping ;
Tang, Shaopu ;
Xu, Da ;
Yao, Chao ;
Dong, Chiheng ;
Xu, Zhongtang ;
Ma, Yanwei ;
Oguro, Hidetoshi ;
Awaji, Satoshi ;
Watanabe, Kazuo .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2015, 28 (10)
[26]   Improvement of the critical current of in situ Cu-sheathed MgB2 wires by copper additions and toluene doping [J].
Wozniak, M. ;
Hopkins, S. C. ;
Gajda, D. ;
Glowacki, B. A. .
SUPERCONDUCTIVITY CENTENNIAL CONFERENCE 2011, 2012, 36 :1594-1598
[27]  
XU D, 2016, SUPERCOND SCI TECH, V29