Metal Artifact Reduction by Dual-Energy Computed Tomography Using Energetic Extrapolation A Systematically Optimized Protocol

被引:137
|
作者
Meinel, Felix G. [1 ]
Bischoff, Bernhard [1 ]
Zhang, Qiaowei [2 ]
Bamberg, Fabian [1 ]
Reiser, Maximilian F. [1 ]
Johnson, Thorsten R. C. [1 ]
机构
[1] Univ Munich, Dept Clin Radiol, D-81377 Munich, Germany
[2] Zhejiang Univ, Sch Med, Sir Run Run Shaw Hosp, Dept Radiol, Hangzhou 310003, Zhejiang, Peoples R China
关键词
metal implants; metal artifacts; dual-energy CT; dual-source CT; energetic extrapolation; CONE-BEAM CT; BONE REMOVAL; RENAL MASSES; IN-VITRO; ANGIOGRAPHY; PROJECTIONS; MULTISLICE; EXPERIENCE; IMPLANTS;
D O I
10.1097/RLI.0b013e31824c86a3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: Energetic extrapolation is a promising strategy to reduce metal artifacts in dual-source computed tomography (DSCT). We performed this study to systematically optimize image acquisition parameters for this approach in a hip phantom and assess its value in a clinical study. Materials and Methods: Titanium and steel hip prostheses were placed in a standard hip phantom and a water tank and scanned on a DSCT scanner. Tube spectra, tube current ratio, collimation, pitch, and rotation time were optimized in a stepwise process. Artifacts were quantified by measuring the standard deviation of the computed tomography density in a doughnut-shaped region of interest placed around the prosthesis. A total of 22 adult individuals with metallic implants referred for computed tomography for a musculoskeletal indication were scanned using the optimized protocol. Degree of artifacts and diagnostic image quality were rated visually (0-10) and maximum streak intensity was measured. Results: Sn140/100 kVp proved superior to Sn140/80 kVp. There was a benefit for increasing tube current ratio from 1:1 to 3:1, but not beyond, in favor of the Sn140 kVp spectrum. Artifacts were less severe for a collimation of 32 x 0.6 mm as compared with 40 x 0.6 mm. A pitch of 0.5 at a rotation time of 0.5 seconds per rotation was preferable to other combinations with comparable scanning times. In the clinical study, increasing the extrapolated photon energy from 64 to 120 keV decreased the severity of artifacts from 8.0 to 2.0 (P < 0.001) and decreased streak intensity from 871 to 153 HU (P < 0.001). The median diagnostic image quality rating improved from 2.5 to 8.0 (P < 0.001). The median energy level visually perceived as optimal for diagnostic evaluation was 113 keV (range, 100-130 keV). Conclusions: Sn140/100 kVp with a tube current ratio of 3:1, a collimation of 32 x 0.6 mm, and extrapolated energies of 105 to 120 keV are optimal parameters for a dedicated DSCT protocol that effectively reduces metal artifacts by energetic extrapolation. The protocol effectively reduces metal artifacts in all types of metal implants. The optimized reconstructions yielded relevant additional findings.
引用
收藏
页码:406 / 414
页数:9
相关论文
共 50 条
  • [11] Reduction of Metal Artifacts Caused by Titanium Peduncular Screws in the Spine by Means of Monoenergetic Images and the Metal Artifact Reduction Software in Dual-Energy Computed Tomography
    Ceccarelli, Luca
    Vara, Giulio
    Ponti, Federico
    Miceli, Marco
    Golfieri, Rita
    Facchini, Giancarlo
    JOURNAL OF MEDICAL PHYSICS, 2022, 47 (02) : 152 - 158
  • [12] Dual-Energy Computed Tomography: Is There a Penalty in Image Quality and Radiation Dose Compared With Single-Energy Computed Tomography?
    Thomas, Christoph
    Ketelsen, Dominik
    Tsiflikas, Ilias
    Reimann, Anja
    Brodoefel, Harald
    Claussen, Claus D.
    Heuschmid, Martin
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2010, 34 (02) : 309 - 315
  • [13] Normalized Metal Artifact Reduction in Head and Neck Computed Tomography
    Lell, Michael M.
    Meyer, Esther
    Kuefner, Michael A.
    May, Matthias S.
    Raupach, Rainer
    Uder, Michael
    Kachelriess, Marc
    INVESTIGATIVE RADIOLOGY, 2012, 47 (07) : 415 - 421
  • [14] Frequency split metal artifact reduction (FSMAR) in computed tomography
    Meyer, Esther
    Raupach, Rainer
    Lell, Michael
    Schmidt, Bernhard
    Kachelriess, Marc
    MEDICAL PHYSICS, 2012, 39 (04) : 1904 - 1916
  • [15] Comparison of metal artifact reduction using single-energy CT and dual-energy CT with various metallic implants in cadavers
    Barreto, Izabella
    Pepin, Eric
    Davis, Ivan
    Dean, Cooper
    Massini, Tara
    Rees, John
    Olguin, Catherine
    Quails, Nathan
    Correa, Nathalie
    Rill, Lynn
    Arreola, Manuel
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 133
  • [16] Periprosthetic Artifact Reduction Using Virtual Monochromatic Imaging Derived From Gemstone Dual-Energy Computed Tomography and Dedicated Software
    Reynoso, Exequiel
    Capunay, Carlos
    Rasumoff, Alejandro
    Vallejos, Javier
    Carpio, Jimena
    Lago, Karen
    Carrascosa, Patricia
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2016, 40 (04) : 649 - 657
  • [17] Dual-Energy Computed Tomography in Genitourinary Imaging
    Mileto, Achille
    Marin, Daniele
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2017, 55 (02) : 373 - +
  • [18] Dual-energy Computed Tomography Imaging of the Aorta
    Vlahos, Ioannis
    Godoy, Myrna C. B.
    Naidich, David P.
    JOURNAL OF THORACIC IMAGING, 2010, 25 (04) : 289 - 300
  • [19] Normalized metal artifact reduction (NMAR) in computed tomography
    Meyer, Esther
    Raupach, Rainer
    Lell, Michael
    Schmidt, Bernhard
    Kachelriess, Marc
    MEDICAL PHYSICS, 2010, 37 (10) : 5482 - 5493
  • [20] Complementary contrast media for metal artifact reduction in Dual-Energy CT
    Lambert, Jack W.
    Edic, Peter M.
    FitzGerald, Paul
    Torres, Andrew S.
    Yeh, Benjamin M.
    MEDICAL IMAGING 2015: PHYSICS OF MEDICAL IMAGING, 2015, 9412