Conformally invariant non-local operators

被引:25
作者
Branson, T [1 ]
Gover, AR
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Auckland, Dept Math, Auckland 1, New Zealand
关键词
D O I
10.2140/pjm.2001.201.19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On a conformal manifold with boundary, we construct conformally invariant local boundary conditions B for the conformally invariant power of the Laplacian (square (k), B) with the property that (square (k), B) is formally self-adjoint. These boundary problems are used to construct conformally invariant nonlocal operators on the boundary Sigma, generalizing the conformal Dirichlet-to-Robin operator, with principal parts which are odd powers h (not necessarily positive) of (-Delta (Sigma))(1/2), where Delta (Sigma) is the boundary Laplace operator. The constructions use tools from a conformally invariant calculus.
引用
收藏
页码:19 / 60
页数:42
相关论文
共 49 条
[1]  
[Anonymous], LOND MATH S
[2]  
[Anonymous], PSEUDODIFFERENTIAL O
[3]   THOMASS STRUCTURE BUNDLE FOR CONFORMAL, PROJECTIVE AND RELATED STRUCTURES [J].
BAILEY, TN ;
EASTWOOD, MG ;
GOVER, AR .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) :1191-1217
[4]  
BASTON RJ, 1990, J DIFFER GEOM, V32, P851
[5]  
BATEMAN H, 1909, P LOND MATH SOC, V8, P223
[6]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[7]   Stein-Weiss operators and ellipticity [J].
Branson, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :334-383
[8]   Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup [J].
Branson, T ;
Olafsson, G ;
Orsted, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (01) :163-205
[9]   HUYGHENS PRINCIPLE IN RIEMANNIAN SYMMETRICAL SPACES [J].
BRANSON, T ;
OLAFSSON, G ;
SCHLICHTKRULL, H .
MATHEMATISCHE ANNALEN, 1995, 301 (03) :445-462
[10]  
BRANSON T, 1997, SUPP REND CIRC MATEM, V46, P29