Imaging Energy Transfer in Pt-Decorated Au Nanoprisms via Electron Energy-Loss Spectroscopy

被引:32
作者
Griffin, Sarah [1 ]
Montoni, Nicholas P. [2 ]
Li, Guoliang [1 ]
Straney, Patrick J. [3 ]
Millstone, Jill E. [3 ]
Masiello, David J. [2 ]
Camden, Jon P. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98915 USA
[3] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
ENHANCED RAMAN-SCATTERING; MAPPING SURFACE-PLASMONS; OPTICAL-PROPERTIES; SINGLE-PARTICLE; ALUMINUM NANOCRYSTALS; HYDROGEN GENERATION; VISIBLE-LIGHT; WAVE-GUIDES; NANOPARTICLES; NANOSTRUCTURES;
D O I
10.1021/acs.jpclett.6b01878
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Driven by the desire to understand energy transfer between plasmonic and catalytic metals for applications such as plasmon-mediated catalysis, we examine the spatially resolved electron energy-loss spectra (EELS) of both pure Au nanoprisms and Pt-decorated Au nanoprisms. The EEL spectra and the resulting surface-plasmon mode maps reveal detailed near-field information on the coupling and energy transfer in these systems, thereby elucidating the underlying mechanism of plasmon-driven chemical catalysis in mixed-metal nanostructures. Through a combination of experiment and theory we demonstrate that although the location of the Pt decoration greatly influences the plasmons of the nanoprism, simple spatial proximity is not enough to induce significant energy transfer from the Au to the Pt. What matters more is the spectral overlap between the intrinsic plasmon resonances of the Au nanoprism and Pt decoration, which can be tuned by changing the composition or morphology of either component.
引用
收藏
页码:3825 / 3832
页数:8
相关论文
共 50 条
[1]   Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials [J].
Boerigter, Calvin ;
Aslam, Umar ;
Linic, Suljo .
ACS NANO, 2016, 10 (06) :6108-6115
[2]   Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis [J].
Boerigter, Calvin ;
Campana, Robert ;
Morabito, Matthew ;
Linic, Suljo .
NATURE COMMUNICATIONS, 2016, 7
[3]   Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy [J].
Cherqui, Charles ;
Thakkar, Niket ;
Li, Guoliang ;
Camden, Jon P. ;
Masiello, David J. .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 67, 2016, 67 :331-357
[4]   Combined Tight-Binding and Numerical Electrodynamics Understanding of the STEM/EELS Magneto-optical Responses of Aromatic Plasmon-Supporting Metal Oligomers [J].
Cherqui, Charles ;
Bigelow, Nicholas W. ;
Vaschillo, Alex ;
Goldwyn, Harrison ;
Masiello, David J. .
ACS PHOTONICS, 2014, 1 (10) :1013-1024
[5]  
Christopher P, 2011, NAT CHEM, V3, P467, DOI [10.1038/NCHEM.1032, 10.1038/nchem.1032]
[6]   Substrate-, Wavelength-, and Time-Dependent Plasmon-Assisted Surface Catalysis Reaction of 4-Nitrobenzenethiol Dimerizing to p,p′-Dimercaptoazobenzene on Au, Ag, and Cu Films [J].
Dong, Bin ;
Fang, Yurui ;
Chen, Xiaowei ;
Xu, Hongxing ;
Sun, Mengtao .
LANGMUIR, 2011, 27 (17) :10677-10682
[7]   OPTICAL PROPERTIES OF ALUMINUM [J].
EHRENREICH, H ;
PHILIPP, HR ;
SEGALL, B .
PHYSICAL REVIEW, 1963, 132 (05) :1918-&
[8]   Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy [J].
Frontiera, Renee R. ;
Henry, Anne-Isabelle ;
Gruenke, Natalie L. ;
Van Duyne, Richard P. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (10) :1199-1203
[9]   Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications [J].
Goeken, Kristian L. ;
Subramaniam, Vinod ;
Gill, Ron .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (01) :422-427
[10]   MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles [J].
Hohenester, Ulrich ;
Truegler, Andreas .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (02) :370-381