Strong 2-skew Commutativity Preserving Maps on Prime Rings with Involution

被引:10
作者
Hou, Jinchuan [1 ]
Wang, Wei [1 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
关键词
Prime rings with involution; 2-skew commutators; Preservers; Identity map; ASTERISK; PRODUCT; XY;
D O I
10.1007/s40840-017-0465-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a unital prime -ring containing a nontrivial symmetric idempotent. For A,BR, the skew commutator and 2-skew commutator are defined, respectively, by [A,B]=AB-BA and [A,B]2=[A,[A,B]]. Let phi:RR be a surjective map. We show that (1) phi satisfies [phi(A),phi(B)]=[A,B] for all A,BR if and only if there exists {-1,1} such that phi(A)=A for all AR; (2) phi satisfies [phi(A),phi(B)]2=[A,B]2 for all A,BR if and only if there exists CS with 3=I such that phi(A)=A for all AR, where I is the unit of R and CS is the symmetric extend centroid of R. This is then applied to prime C-algebras, factor von Neumann algebras and indefinite self-adjoint standard operator algebras to get a complete invariant for the identity map and to symmetric standard operator algebras as well as matrix algebras.
引用
收藏
页码:33 / 49
页数:17
相关论文
共 22 条
[1]   THE EXTENDED CENTROID OF C-STAR-ALGEBRAS [J].
ARA, P .
ARCHIV DER MATHEMATIK, 1990, 54 (04) :358-364
[2]  
Brear M., 2007, Functional Identities
[3]   STRONG COMMUTATIVITY PRESERVING-MAPS OF SEMIPRIME RINGS [J].
BRESAR, M ;
MIERS, CR .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :457-460
[4]   Linear maps preserving elements annihilated by the polynomial XY - YX [J].
Cui, Jianlian ;
Hou, Jinchuan .
STUDIA MATHEMATICA, 2006, 174 (02) :183-199
[5]  
Cui JL, 2012, ACTA MATH SCI, V32, P531
[6]   Maps preserving product XY-YX* on factor von Neumann algebras [J].
Cui, Jianlian ;
Li, Chi-Kwong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :833-842
[7]   Nonlinear maps preserving Jordan *-products [J].
Dai, Liqing ;
Lu, Fangyan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :180-188
[8]  
Deng Q., 1996, Results Math., V30, P259, DOI [10.1007/BF03322194https://doi.org/10.1142/S1005386717000244, DOI 10.1007/BF03322194HTTPS://DOI.ORG/10.1142/S1005386717000244, DOI 10.1007/BF03322194]
[9]   OPERATOR IDENTITY SIGMA-AKXBK = O [J].
FONG, CK ;
SOUROUR, AR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (04) :845-857
[10]   Strong Skew Commutativity Preserving Maps on Rings with Involution [J].
Li, Chang Jing ;
Chen, Quan Yuan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (06) :745-752