The Minimal Limit Point of the Third Largest Laplacian Eigenvalues of Graphs

被引:0
作者
Wu, Yarong [1 ,2 ]
Shu, Jinlong [1 ,3 ]
Hong, Yuan
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Shanghai Maritime Univ, Dept Math, Shanghai 200135, Peoples R China
[3] E China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian spectra; limit point; forbidden subgraph; diameter;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple connected graph with n vertices. Denoted by L(G) the Laplacian matrix of G. In this paper, we present a sequence of graphs {G(n)}with lim(n ->infinity) mu(3)(G(n)) = 1.5550 by investigating the eigenvalues of the line graphs of {G(n)}. Moreover, we prove that the limit is the minimal limit point of the third largest Laplacian eigenvalues of graphs.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1985, Linear Multilinear Algebra, DOI [DOI 10.1080/03081088508817681, 10.1080/03081088508817681]
[2]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[3]   THE LIMIT POINTS OF EIGENVALUES OF GRAPHS [J].
DOOB, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :659-662
[4]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[5]   The limit points of Laplacian spectra of graphs [J].
Guo, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 :121-128
[6]  
Hoffman A.J., 1972, Lecture Notes Math., V303, P165
[7]  
Lovasz L., 1973, Periodica Mathematica Hungarica, V3, P175, DOI DOI 10.1007/BF02018473
[8]  
MERRIS R, 1994, LINEAR ALGEBRA APPL, V198, P143
[9]  
Mohar B, 1997, NATO ADV SCI I C-MAT, V497, P225
[10]   On bipartite graphs with small number of Laplacian eigenvalues greater than two and three [J].
Petrovic, M ;
Gutman, I ;
Lepovic, M ;
Milekic, B .
LINEAR & MULTILINEAR ALGEBRA, 2000, 47 (03) :205-215