Hydroconversion of Thiophene Derivatives over Dispersed Ni-Mo Sulfide Catalysts

被引:8
作者
Vutolkina, A. V. [1 ]
Makhmutov, D. F. [1 ]
Zanina, A. V. [1 ]
Maximov, A. L. [1 ,2 ]
Kopitsin, D. S. [3 ]
Glotov, A. P. [1 ,3 ]
Egazar'yants, S. V. [1 ]
Karakhanov, E. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Chem, Moscow 119991, Russia
[2] Russian Acad Sci, Topchiev Inst Petrochem Synth, Moscow 119991, Russia
[3] Natl Res Univ, Gubkin Russian State Univ Oil & Gas, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
hydrodesulfurization; nickel-molybdenum sulfide catalysts; dispersed catalysts; water-gas shift reaction; IN-SITU DECOMPOSITION; HYDROGENATION CATALYSTS;
D O I
10.1134/S0965544118140141
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
The activity of unsupported Ni-Mo sulfide catalysts is studied in the hydroconversion of benzothiophene and dibenzothiophenes in the temperature range of 340-380 degrees C and at an increased H-2 pressure and in the C?/H-2? system. The structure of dispersed catalysts formed by the in situ high-temperature decomposition of oil-soluble precursors (molybdenum hexacarbonyl, nickel naphthenate) is investigated by TEM. Effects of C?/H-2? molar ratio, water mass content in the system, and CO pressure on the activity of the catalysts and yields of the products are explored. It is shown that, in the C?/H-2? system, the highest conversion of benzothiophene and dibenzothiophene is attained at a temperature of 380 degrees C, a C? pressure of 5MPa, and a C?/H-2? molar ratio of 2. The introduction of alkyl substituents into a dibenzothiophene molecule causes a reduction in the rate of reaction that predominantly occurs via the hydrogenation of aromatic rings. The catalyst activities in hydrogenation under H-2 pressure and in the C?/H-2? system are comparable.
引用
收藏
页码:1227 / 1232
页数:6
相关论文
共 11 条
[1]   Thermodynamic aspects of aromatic hydrogenation [J].
Ali, S. A. .
PETROLEUM SCIENCE AND TECHNOLOGY, 2007, 25 (10) :1293-1304
[2]   Unsupported transition metal sulfide catalysts: From fundamentals to industrial application [J].
Eijsbouts, S. ;
Mayo, S. W. ;
Fujita, K. .
APPLIED CATALYSIS A-GENERAL, 2007, 322 :58-66
[3]   Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges [J].
Hashemi, Rohallah ;
Nassar, Nashaat N. ;
Almao, Pedro Pereira .
APPLIED ENERGY, 2014, 133 :374-387
[4]   Potassium effect in K-Ni(Co)PW/Al2O3 catalysts for selective hydrotreating of model FCC gasoline [J].
Ishutenko, D. ;
Minaev, P. ;
Anashkin, Yu. ;
Nikulshina, M. ;
Mozhaev, A. ;
Maslakov, K. ;
Nikulshin, P. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 203 :237-246
[5]   Synthesis and properties of nanosized systems as efficient catalysts for hydroconversion of heavy petroleum feedstock [J].
Khadzhiev, S. N. ;
Kadiev, Kh M. ;
Kadieva, M. Kh. .
PETROLEUM CHEMISTRY, 2014, 54 (05) :323-346
[6]   A Rational Comparison of the Optimal Promoter Edge Decoration of HDT NiMoS vs CoMoS Catalysts [J].
Marchand, K. ;
Legens, C. ;
Guillaume, D. ;
Raybaud, P. .
OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2009, 64 (06) :719-730
[7]   Performance of unsupported Ni(Co,Fe)/MoS2 catalysts in hydrotreating reactions [J].
Olivas, A. ;
Zepeda, T. A. ;
Villalpando, I. ;
Fuentes, S. .
CATALYSIS COMMUNICATIONS, 2008, 9 (06) :1317-1328
[8]   Nickel-Molybdenum Sulfide Naphthalene Hydrogenation Catalysts Synthesized by the In Situ Decomposition of Oil-Soluble Precursors [J].
Sizova, I. A. ;
Maksimov, A. L. .
PETROLEUM CHEMISTRY, 2017, 57 (07) :595-599
[9]   Synthesis of Ni-W aromatic hydrocarbon hydrogenation catalysts by the ex situ and in situ decomposition of a precursor based on a dendrimer network [J].
Sizova, I. A. ;
Kulikov, A. B. ;
Zolotukhina, A. V. ;
Serdyukov, S. I. ;
Maksimov, A. L. ;
Karakhanov, E. A. .
PETROLEUM CHEMISTRY, 2016, 56 (12) :1107-1113
[10]   AROMATIC HYDROGENATION CATALYSIS - A REVIEW [J].
STANISLAUS, A ;
COOPER, BH .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1994, 36 (01) :75-123