Linear Growing Minimum Distance of Ultra-Sparse Non-Binary Cluster-LDPC Codes

被引:0
作者
Savin, Valentin [1 ]
Declercq, David [2 ]
机构
[1] CEA LETI, MINATEC Campus, F-38054 Grenoble, France
[2] Univ Cergy Pontoise, CNRS, ETIS, ENSEA,UMR 8051, F-95000 Cergy Pontoise, France
来源
2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT) | 2011年
关键词
Non-binary cluster-LDPC codes; graph codes; minimum distance; Gilbert-Varshamov bound; GRAPHS; DESIGN;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the asymptotic minimum distance of non-binary cluster-LDPC codes whose subjacent binary parity-check matrix is composed of localized density of ones, concentrated in clusters of bits. A particular attention is given to cluster codes represented by ultra-sparse bipartite graphs, in the sense that each symbol-node is connected to exactly d(upsilon) = 2 constraint-nodes. We derive a lower bound on the minimum distance of non-binary cluster-LDPC codes and we show that there exist ensembles of ultra-sparse codes whose minimum distance grows linearly with the code length (with probability going to 1 as the code length goes to infinity). This result is in contrast with "classical" non-binary LDPC codes based on graphs with strictly regular d(upsilon) = 2 symbol-nodes, whose minimum distance grows at most logarithmically with the code length. We also show that one can build practical non-binary cluster-LDPC codes with various finite codeword lengths, whose minimum distance is close to the Gilbert-Varshamov bound.
引用
收藏
页码:523 / 527
页数:5
相关论文
共 19 条
  • [1] EIGENVALUES AND EXPANDERS
    ALON, N
    [J]. COMBINATORICA, 1986, 6 (02) : 83 - 96
  • [2] [Anonymous], 1963, Low-Density Parity-Check Codes
  • [3] Boutros J. J., 1999, IEEE INT C COMM VANC
  • [4] Low-Density Parity Check Codes over GF (q)
    Davey, Matthew C.
    MacKay, David
    [J]. IEEE COMMUNICATIONS LETTERS, 1998, 2 (06) : 165 - 167
  • [5] Declercq D., 2008, P ISIT 08 TOR CAN JU
  • [6] Turbo codes with rate-m/(m+1) constituent convolutional codes
    Douillard, C
    Berrou, C
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2005, 53 (10) : 1630 - 1638
  • [7] Friedman J, 2008, MEM AM MATH SOC, V195, P1
  • [8] FFT-based BP decoding of general LDPC codes over abelian groups
    Goupil, Alban
    Colas, Maxime
    Gelle, Guillaume
    Declercq, David
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2007, 55 (04) : 644 - 649
  • [9] Regular and irregular progressive edge-growth tanner graphs
    Hu, XY
    Eleftheriou, E
    Arnold, DM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) : 386 - 398
  • [10] RAMANUJAN GRAPHS
    LUBOTZKY, A
    PHILLIPS, R
    SARNAK, P
    [J]. COMBINATORICA, 1988, 8 (03) : 261 - 277