A proof of Luttinger's theorem

被引:6
|
作者
Praz, A [1 ]
Feldman, J
Knörrer, H
Trubowitz, E
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
[2] Paul Scherrer Inst, Villigen, Switzerland
[3] Univ British Columbia, Dept Math, Vancouver, BC, Canada
来源
EUROPHYSICS LETTERS | 2005年 / 72卷 / 01期
关键词
D O I
10.1209/epl/i2005-10188-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A rigorous and simple perturbative proof of Luttinger's theorem is sketched for Fermi liquids in two and three dimensions. It is proved that in the finite volume, the quasiparticle density is independent of the interaction strength. The thermodynamic limit is then controlled to all orders in perturbation theory.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [21] A PROOF OF JAKOBSON'S THEOREM
    Yoccoz, Jean-Christophe
    ASTERISQUE, 2019, (410) : 15 - 52
  • [22] A proof of Kolmogorov's theorem
    Hubbard, J
    Ilyashenko, Y
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (1-2) : 367 - 385
  • [23] A proof of Boca's Theorem
    Davidson, Kenneth R.
    Kakariadis, Evgenios T. A.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 869 - 876
  • [24] Friedel oscillations in one-dimensional metals: From Luttinger's theorem to the Luttinger liquid
    Vieira, Daniel
    Freire, Henrique J. P.
    Campo, V. L.
    Capelle, K.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (14) : E418 - E420
  • [25] PROOF OF A CONJECTURE BY LUTTINGER AND TISZA
    KARL, G
    PHYSICAL REVIEW B, 1973, 7 (05): : 2050 - 2053
  • [26] Generalization of Luttinger’s theorem for strongly correlated electron systems
    M. M. Korshunov
    S. G. Ovchinnikov
    Physics of the Solid State, 2003, 45 : 1415 - 1422
  • [27] Generalization of Luttinger's theorem for strongly correlated electron systems
    Korshunov, MM
    Ovchinnikov, SG
    PHYSICS OF THE SOLID STATE, 2003, 45 (08) : 1415 - 1422
  • [28] Fermi surfaces and Luttinger's theorem in paired fermion systems
    Sachdev, S
    Yang, K
    PHYSICAL REVIEW B, 2006, 73 (17):
  • [29] A unified proof of Brooks' theorem and Catlin's theorem
    Sivaraman, Vaidy
    DISCRETE MATHEMATICS, 2015, 338 (02) : 272 - 273
  • [30] THE LUTTINGER THEOREM AND INTERMEDIATE VALENCE
    GELDENHUYS, J
    ROBERTS, M
    STEVENS, KWH
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (02): : 221 - 227