A class of Hilfer fractional stochastic differential equations and optimal controls

被引:20
作者
Lv, Jingyun [1 ,2 ]
Yang, Xiaoyuan [1 ,2 ]
机构
[1] Beihang Univ, LMIB, Beijing, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal control; Hilfer fractional derivative; Fractional stochastic differential equations; EVOLUTION-EQUATIONS; MILD SOLUTIONS; EXISTENCE; CONTROLLABILITY; DELAY;
D O I
10.1186/s13662-019-1953-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of Hilfer fractional stochastic differential equations with nonlocal conditions. We first study the existence of mild solutions of these equations by means of stochastic analysis theory, fractional calculations, and operator semigroup theory. Further, the existence of optimal pairs for the corresponding Lagrange control systems is investigated. Finally, an example is presented to illustrate our obtained results.
引用
收藏
页数:17
相关论文
共 36 条
[1]   Exact Null Controllability of Sobolev-Type Hilfer Fractional Stochastic Differential Equations with Fractional Brownian Motion and Poisson Jumps [J].
Ahmed, Hamdy M. ;
Wang, JinRong .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03) :673-690
[2]   Hilfer fractional stochastic integro-differential equations [J].
Ahmed, Hamdy M. ;
El-Borai, Mahmoud M. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 :182-189
[3]   The Solvability and Optimal Controls for Impulsive Fractional Stochastic Integro-Differential Equations via Resolvent Operators [J].
Balasubramaniam, P. ;
Tamilalagan, P. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) :139-155
[5]  
Byszewski L., 1991, Applicable Analysis, V40, P11
[6]  
Gou H., 2017, J PSEUDO-DIFFER OPER, V2, P1
[7]   Study on Sobolev type Hilfer fractional integro-differential equations with delay [J].
Gou, Haide ;
Li, Baolin .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01) :1-26
[8]   Existence of mild solution for evolution equation with Hilfer fractional derivative [J].
Gu, Haibo ;
Trujillo, Juan J. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :344-354
[9]   The Necessary Conditions of Fractional Optimal Control in the Sense of Caputo [J].
Guo, Tian Liang .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) :115-126
[10]  
Hilfer R., 2000, Applications of Fractional Calculus in Physics, DOI DOI 10.1142/3779