共 50 条
Visual oscillation effects on dynamic balance control in people with multiple sclerosis
被引:1
|作者:
Riem, Lara
[1
,2
]
Beardsley, Scott A.
[1
,2
]
Obeidat, Ahmed Z.
[3
]
Schmit, Brian D.
[1
,2
]
机构:
[1] Marquette Univ, Dept Biomed Engn, POB 1881, Milwaukee, WI 53201 USA
[2] Med Coll Wisconsin, POB 1881, Milwaukee, WI 53201 USA
[3] Med Coll Wisconsin, Dept Neurol, Milwaukee, WI 53226 USA
关键词:
Multiple sclerosis;
Virtual reality;
Balance;
Visual motion;
Gait;
Object motion;
Self-motion;
STANDING BALANCE;
ACTIVE CONTROL;
POSTURAL SWAY;
MOTION;
GAIT;
WALKING;
PERCEPTION;
STABILITY;
FEEDBACK;
VISION;
D O I:
10.1186/s12984-022-01060-0
中图分类号:
R318 [生物医学工程];
学科分类号:
0831 ;
摘要:
Background: People with multiple sclerosis (PwMS) have balance deficits while ambulating through environments that contain moving objects or visual manipulations to perceived self-motion. However, their ability to parse object from self-movement has not been explored. The purpose of this research was to examine the effect of medial-lateral oscillations of the visual field and of objects within the scene on gait in PwMS and healthy age-matched controls using virtual reality (VR). Methods: Fourteen PwMS (mean age 49 +/- 11 years, functional gait assessment score of 27.8 +/- 1.8, and Berg Balance scale score 54.7 +/- 1.5) and eleven healthy controls (mean age: 53 +/- 12 years) participated in this study. Dynamic balance control was assessed while participants walked on a treadmill at a self-selected speed while wearing a VR headset that projected an immersive forest scene. Visual conditions consisted of (1) no visual manipulations (speed-matched anterior/posterior optical flow), (2) 0.175 m mediolateral translational oscillations of the scene that consisted of low pairing (0.1 and 0.31 Hz) or (3) high pairing (0.15 and 0.465 Hz) frequencies, (4) 5 degree medial-lateral rotational oscillations of virtual trees at a low frequency pairing (0.1 and 0.31 Hz), and (5) a combination of the tree and scene movements in (3) and (4). Results: We found that both PwMS and controls exhibited greater instability and visuomotor entrainment to simulated mediolateral translation of the visual field (scene) during treadmill walking. This was demonstrated by significant (p < 0.05) increases in mean step width and variability and center of mass sway. Visuomotor entrainment was demonstrated by high coherence between center of mass sway and visual motion (magnitude square coherence = similar to 0.5 to 0.8). Only PwMS exhibited significantly greater instability (higher step width variability and center of mass sway) when objects moved within the scene (i.e., swaying trees). Conclusion: Results suggest the presence of visual motion processing errors in PwMS that reduced dynamic stability. Specifically, object motion (via tree sway) was not effectively parsed from the observer's self-motion. Identifying this distinction between visual object motion and self-motion detection in MS provides insight regarding stability control in environments with excessive external movement, such as those encountered in daily life.
引用
收藏
页数:16
相关论文