A hybrid kriging/land-use regression model with Asian culture-specific sources to assess NO2 spatial-temporal variations

被引:55
作者
Chen, Tsun-Hsuan [1 ]
Hsu, Yen-Ching [2 ]
Zeng, Yu-Ting [3 ]
Lung, Shih-Chun Candice [4 ,5 ,6 ]
Su, Huey-Jen [7 ]
Chao, Hsing Jasmine [8 ]
Wu, Chih-Da [3 ,9 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston UTHlth, Dept Epidemiol Human Genet & Environm Sci, Sch Publ Hlth, Houston, TX USA
[2] Natl Chiayi Univ, Dept Forestry & Nat Resources, Chiayi, Taiwan
[3] Natl Cheng Kung Univ, Dept Geomat, Tainan, Taiwan
[4] Acad Sinica, Res Ctr Environm Changes, Taipei, Taiwan
[5] Natl Taiwan Univ, Dept Atmospher Sci, Taipei, Taiwan
[6] Natl Taiwan Univ, Inst Environm Hlth, Taipei, Taiwan
[7] Natl Cheng Kung Univ, Dept Environm & Occupat Hlth, Tainan, Taiwan
[8] Taipei Med Univ, Sch Publ Hlth, Taipei, Taiwan
[9] Natl Hlth Res Inst, Natl Inst Environm Hlth Sci, Miaoli, Taiwan
关键词
Nitrogen dioxide (NO2); Hybrid kriging/LUR model; Culture-specific sources; Spatial-temporal variations; LAND-USE REGRESSION; PARTICULATE MATTER; AIR-POLLUTION; HIGH-DENSITY; PERSONAL EXPOSURE; PM2.5; VARIABILITY; METROPOLIS; SHANGHAI; QUALITY;
D O I
10.1016/j.envpol.2019.113875
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Kriging interpolation and land use regression (LUR) have characterized the spatial variability of long-term nitrogen dioxide (NO2), but there has been little research on combining these two methods to capture small-scale spatial variation. Furthermore, studies predicting NO2 exposure are almost exclusively based on traffic-related variables, which may not be transferable to Taiwan, a typical Asian country with diverse local emission sources, where densely distributed temples and restaurants may be important for NO2 levels. To advance the exposure estimates in Taiwan, a hybrid kriging/LUR model incorporates culture-specific sources as potential predictors. Based on 14-year NO2 observations from 73 monitoring stations across Taiwan, a set of interpolated NO2 values were generated through a leave-one-out ordinary kriging algorithm, and this was included as an explanatory variable in the stepwise LUR procedures. Kriging interpolated NO2 and culture-specific predictors were entered in the final models, which captured 90% and 87% of NO2 variation in annual and monthly resolution, respectively. Results from 10-fold cross-validation and external data verification demonstrate robust performance of the developed models. This study demonstrates the value of incorporating the kriging-interpolated estimates and culture-specific emission sources into the traditional LUR model structure for predicting NO2, which can be particularly useful for Asian countries. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 43 条
[1]   Annual and seasonal spatial models for nitrogen oxides in Tehran, Iran [J].
Amini, Heresh ;
Taghavi-Shahri, Seyed-Mahmood ;
Henderson, Sarah B. ;
Hosseini, Vahid ;
Hassankhany, Hossein ;
Naderi, Maryam ;
Ahadi, Solmaz ;
Schindler, Christian ;
Kunzli, Nino ;
Yunesian, Masud .
SCIENTIFIC REPORTS, 2016, 6
[2]  
[Anonymous], MONTHL STAT TRANSP C
[3]   Application of Regression Kriging to Air Pollutant Concentrations in Japan with High Spatial Resolution [J].
Araki, Shin ;
Yamamoto, Kouhei ;
Kondo, Akira .
AEROSOL AND AIR QUALITY RESEARCH, 2015, 15 (01) :234-241
[4]   Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project [J].
Beelen, Rob ;
Hoek, Gerard ;
Vienneau, Danielle ;
Eeftens, Marloes ;
Dimakopoulou, Konstantina ;
Pedeli, Xanthi ;
Tsai, Ming-Yi ;
Kunzli, Nino ;
Schikowski, Tamara ;
Marcon, Alessandro ;
Eriksen, Kirsten T. ;
Raaschou-Nielsen, Ole ;
Stephanou, Euripides ;
Patelarou, Evridiki ;
Lanki, Timo ;
Yli-Tuomi, Tarja ;
Declercq, Christophe ;
Falq, Gregoire ;
Stempfelet, Morgane ;
Birk, Matthias ;
Cyrys, Josef ;
von Klot, Stephanie ;
Nador, Gizella ;
Varro, Mihaly Janos ;
Dedele, Audrius ;
Grazuleviciene, Regina ;
Moelter, Anna ;
Lindley, Sarah ;
Madsen, Christian ;
Cesaroni, Giulia ;
Ranzi, Andrea ;
Badaloni, Chiara ;
Hoffmann, Barbara ;
Nonnemacher, Michael ;
Kraemer, Ursula ;
Kuhlbusch, Thomas ;
Cirach, Marta ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Bellander, Tom ;
Korek, Michal ;
Olsson, David ;
Stromgren, Magnus ;
Dons, Evi ;
Jerrett, Michael ;
Fischer, Paul ;
Wang, Meng ;
Brunekreef, Bert ;
de Hoogh, Kees .
ATMOSPHERIC ENVIRONMENT, 2013, 72 :10-23
[5]  
Bootdee S., 2014, Int. J. Environ. Sustain Dev., V5, P228, DOI [10.7763/IJESD.2014.V5.483, DOI 10.7763/IJESD.2014.V5.483]
[6]   A land use regression model incorporating data on industrial point source pollution [J].
Chen, Li ;
Wang, Yuming ;
Li, Peiwu ;
Ji, Yaqin ;
Kong, Shaofei ;
Li, Zhiyong ;
Bai, Zhipeng .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2012, 24 (07) :1251-1258
[7]   A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China [J].
Chen, Li ;
Bai, Zhipeng ;
Kong, Shaofei ;
Han, Bin ;
You, Yan ;
Ding, Xiao ;
Du, Shiyong ;
Liu, Aixia .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2010, 22 (09) :1364-1373
[8]   Reconstructing Taiwan's land cover changes between 1904 and 2015 from historical maps and satellite images [J].
Chen, Yi-Ying ;
Huang, Wei ;
Wang, Wei-Hong ;
Juang, Jehn-Yih ;
Hong, Jing-Shan ;
Kato, Tomomichi ;
Luyssaert, Sebastiaan .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   A study on modeling nitrogen dioxide concentrations using land-use regression and conventionally used exposure assessment methods [J].
Choi, Giehae ;
Bell, Michelle L. ;
Lee, Jong-Tae .
ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (04)
[10]   Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions [J].
Eeftens, Marloes ;
Meier, Reto ;
Schindler, Christian ;
Aguilera, Inmaculada ;
Phuleria, Harish ;
Ineichen, Alex ;
Davey, Mark ;
Ducret-Stich, Regina ;
Keidel, Dirk ;
Probst-Hensch, Nicole ;
Kunzli, Nino ;
Tsai, Ming-Yi .
ENVIRONMENTAL HEALTH, 2016, 15