Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor

被引:42
作者
Tang, Yuxiang [1 ]
Zhang, Yanbin [2 ,3 ]
Liu, Qirui [1 ]
Wei, Ke [1 ,4 ,5 ]
Cheng, Xiang'ai [1 ]
Shi, Lei [2 ,3 ]
Jiang, Tian [1 ,5 ]
机构
[1] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha 410073, Peoples R China
[2] Fudan Univ, Key Lab Micro & Nanophoton Struct, Minist Educ, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[4] Natl Univ Def Technol, Coll Comp, State Key Lab High Performance Comp, Changsha 410073, Peoples R China
[5] Natl Univ Def Technol, Beijing Inst Adv Study, Beijing 100000, Peoples R China
基金
中国国家自然科学基金;
关键词
INDUCED TRANSPARENCY; PHOTON NONLINEARITY; ACTIVE CONTROL; POLARITONS; EXCITONS; FANO; DYNAMICS; PLASMONS; NANOROD; WS2;
D O I
10.1038/s41377-022-00754-3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Searching for ideal materials with strong effective optical nonlinear responses is a long-term task enabling remarkable breakthroughs in contemporary quantum and nonlinear optics. Polaritons, hybridized light-matter quasiparticles, are an appealing candidate to realize such nonlinearities. Here, we explore a class of peculiar polaritons, named plasmon-exciton polaritons (plexcitons), in a hybrid system composed of silver nanodisk arrays and monolayer tungsten-disulfide (WS2), which shows giant room-temperature nonlinearity due to their deep-subwavelength localized nature. Specifically, comprehensive ultrafast pump-probe measurements reveal that plexciton nonlinearity is dominated by the saturation and higher-order excitation-induced dephasing interactions, rather than the well-known exchange interaction in traditional microcavity polaritons. Furthermore, we demonstrate this giant nonlinearity can be exploited to manipulate the ultrafast nonlinear absorption properties of the solid-state system. Our findings suggest that plexcitons are intrinsically strongly interacting, thereby pioneering new horizons for practical implementations such as energy-efficient ultrafast all-optical switching and information processing.
引用
收藏
页数:11
相关论文
共 69 条
[1]   Plasmon-Exciton Interactions in a Core-Shell Geometry: From Enhanced Absorption to Strong Coupling [J].
Antosiewicz, Tomasz J. ;
Apell, S. Peter ;
Shegai, Timur .
ACS PHOTONICS, 2014, 1 (05) :454-463
[2]   Temporal plasmonics: Fano and Rabi regimes in the time domain in metal nanostructures [J].
Avalos-Ovando, Oscar ;
Besteiro, Lucas, V ;
Wang, Zhiming ;
Govorov, Alexander O. .
NANOPHOTONICS, 2020, 9 (11) :3587-3595
[3]   Polaritonics: from microcavities to sub-wavelength confinement [J].
Ballarini, Dario ;
De Liberato, Simone .
NANOPHOTONICS, 2019, 8 (04) :641-654
[4]   Interacting polariton fluids in a monolayer of tungsten disulfide [J].
Barachati, Fabio ;
Fieramosca, Antonio ;
Hafezian, Soroush ;
Gu, Jie ;
Chakraborty, Biswanath ;
Ballarini, Dario ;
Martinu, Ludvik ;
Menon, Vinod ;
Sanvitto, Daniele ;
Kena-Cohen, Stephane .
NATURE NANOTECHNOLOGY, 2018, 13 (10) :906-+
[5]   Ultrafast Dynamics of Metal Plasmons Induced by 2D Semiconductor Excitons in Hybrid Nanostructure Arrays [J].
Boulesbaa, Abdelaziz ;
Babicheva, Viktoriia E. ;
Wang, Kai ;
Kravchenko, Ivan I. ;
Lin, Ming-Wei ;
Mahjouri-Samani, Masoud ;
Jacobs, Christopher B. ;
Puretzky, Alexander A. ;
Xiao, Kai ;
Ivanov, Ilia ;
Rouleau, Christopher M. ;
Geohegan, David B. .
ACS PHOTONICS, 2016, 3 (12) :2389-2395
[6]   Quantum fluids of light [J].
Carusotto, Iacopo ;
Ciuti, Cristiano .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :299-366
[7]  
Chang DE, 2014, NAT PHOTONICS, V8, P685, DOI [10.1038/NPHOTON.2014.192, 10.1038/nphoton.2014.192]
[8]   Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons [J].
Chen, Yu-Hui ;
Tamming, Ronnie R. ;
Chen, Kai ;
Zhang, Zhepeng ;
Liu, Fengjiang ;
Zhang, Yanfeng ;
Hodgkiss, Justin M. ;
Blaikie, Richard J. ;
Ding, Boyang ;
Qiu, Min .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   Resonant optical Stark effect in monolayer WS2 [J].
Cunningham, Paul D. ;
Hanbicki, Aubrey T. ;
Reinecke, Thomas L. ;
McCreary, Kathleen M. ;
Jonker, Berend T. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]  
Daskalakis KS, 2014, NAT MATER, V13, P272, DOI [10.1038/NMAT3874, 10.1038/nmat3874]