Nanoplasmonic Phenomena at Electronic Boundaries in Graphene

被引:23
作者
Fei, Zhe [1 ]
Ni, Guang-Xin [2 ]
Jiang, Bor-Yuan [2 ]
Fogler, Michael M. [2 ]
Basov, D. N. [2 ,3 ]
机构
[1] Iowa State Univ, Dept Phys & Astron, US DOE, Ames Lab, Ames, IA 50011 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
关键词
graphene plasmons; electronic boundary; scanning plasmon interferometry; s-SNOM; plasmonic fringes; HEXAGONAL BORON-NITRIDE; MOIRE SUPERLATTICES; BILAYER GRAPHENE; INFRARED-SPECTROSCOPY; PLASMONIC PHENOMENA; DOMAIN-WALLS; POLARITONS; TERAHERTZ; HETEROSTRUCTURES; NANOSCOPY;
D O I
10.1021/acsphotonics.7b00477
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We review recent discoveries of the intriguing plasmonic phenomena at a variety of electronic boundaries (EBs) in graphene including a line of charges in graphene induced by a carbon nanotube gate, grain boundaries in chemical vapor deposited graphene films, an interface between graphene and moire patterned graphene, an interface between graphene and bilayer graphene, and others. All these and other EBs cause plasmonic impedance mismatch at the two sides of the boundaries. Manifestations of this effect include plasmonic fringes that stem from plasmon reflections and interference. Quantitative analysis and modeling of these plasmonic fringes uncovered intriguing properties and underlying physics of the EBs. Potential plasmonic applications associated with these EBs are also briefly discussed.
引用
收藏
页码:2971 / 2977
页数:7
相关论文
共 81 条
[1]   Correlated Magnetic States in Extended One-Dimensional Defects in Graphene [J].
Alexandre, Simone S. ;
Lucio, A. D. ;
Castro Neto, A. H. ;
Nunes, R. W. .
NANO LETTERS, 2012, 12 (10) :5097-5102
[2]   Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns [J].
Alonso-Gonzalez, P. ;
Nikitin, A. Y. ;
Golmar, F. ;
Centeno, A. ;
Pesquera, A. ;
Velez, S. ;
Chen, J. ;
Navickaite, G. ;
Koppens, F. ;
Zurutuza, A. ;
Casanova, F. ;
Hueso, L. E. ;
Hillenbrand, R. .
SCIENCE, 2014, 344 (6190) :1369-1373
[3]  
Alonso-González P, 2017, NAT NANOTECHNOL, V12, P31, DOI [10.1038/NNANO.2016.185, 10.1038/nnano.2016.185]
[4]   The promise of plasmonics [J].
Atwater, Harry A. .
SCIENTIFIC AMERICAN, 2007, 296 (04) :56-63
[5]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[6]  
Barja S, 2016, NAT PHYS, V12, P751, DOI [10.1038/NPHYS3730, 10.1038/nphys3730]
[7]   Polaritons in van der Waals materials [J].
Basov, D. N. ;
Fogler, M. M. ;
Garcia de Abajo, F. J. .
SCIENCE, 2016, 354 (6309)
[8]   Colloquium: Graphene spectroscopy [J].
Basov, D. N. ;
Fogler, M. M. ;
Lanzara, A. ;
Wang, Feng ;
Zhang, Yuanbo .
REVIEWS OF MODERN PHYSICS, 2014, 86 (03) :959-994
[9]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[10]   Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures [J].
Brar, Victor W. ;
Jang, Min Seok ;
Sherrott, Michelle ;
Kim, Seyoon ;
Lopez, Josue J. ;
Kim, Laura B. ;
Choi, Mansoo ;
Atwater, Harry .
NANO LETTERS, 2014, 14 (07) :3876-3880