GNN-SubNet: disease subnetwork detection with explainable graph neural networks

被引:40
作者
Pfeifer, Bastian [1 ]
Saranti, Anna [1 ]
Holzinger, Andreas [1 ,2 ,3 ]
机构
[1] Med Univ Graz, Inst Med Informat Stat & Documentat, Graz, Austria
[2] Univ Nat Resources & Life Sci Vienna, Human Ctr AI Lab, Dept Forest & Soil Sci, Vienna, Austria
[3] Univ Alberta, Alberta Machine Intelligence Inst, Edmonton, AB, Canada
基金
奥地利科学基金会;
关键词
D O I
10.1093/bioinformatics/btac478
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The tremendous success of graphical neural networks (GNNs) already had a major impact on systems biology research. For example, GNNs are currently being used for drug target recognition in protein-drug interaction networks, as well as for cancer gene discovery and more. Important aspects whose practical relevance is often underestimated are comprehensibility, interpretability and explainability. Results: In this work, we present a novel graph-based deep learning framework for disease subnetwork detection via explainable GNNs. Each patient is represented by the topology of a protein-protein interaction (PPI) network, and the nodes are enriched with multi-omics features from gene expression and DNA methylation. In addition, we propose a modification of the GNNexplainer that provides model-wide explanations for improved disease subnetwork detection.
引用
收藏
页码:ii120 / ii126
页数:7
相关论文
共 35 条
[1]   A gentle introduction to deep learning for graphs [J].
Bacciu, Davide ;
Errica, Federico ;
Micheli, Alessio ;
Podda, Marco .
NEURAL NETWORKS, 2020, 129 :203-221
[2]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[3]   Assessment of network module identification across complex diseases [J].
Choobdar, Sarvenaz ;
Ahsen, Mehmet E. ;
Crawford, Jake ;
Tomasoni, Mattia ;
Fang, Tao ;
Lamparter, David ;
Lin, Junyuan ;
Hescott, Benjamin ;
Hu, Xiaozhe ;
Mercer, Johnathan ;
Natoli, Ted ;
Narayan, Rajiv ;
Aicheler, Fabian ;
Amoroso, Nicola ;
Arenas, Alex ;
Azhagesan, Karthik ;
Baker, Aaron ;
Banf, Michael ;
Batzoglou, Serafim ;
Baudot, Anais ;
Bellotti, Roberto ;
Bergmann, Sven ;
Boroevich, Keith A. ;
Brun, Christine ;
Cai, Stanley ;
Caldera, Michael ;
Calderone, Alberto ;
Cesareni, Gianni ;
Chen, Weiqi ;
Chichester, Christine ;
Cowen, Lenore ;
Cui, Hongzhu ;
Phuong Dao ;
De Domenico, Manlio ;
Dhroso, Andi ;
Didier, Gilles ;
Divine, Mathew ;
del Sol, Antonio ;
Feng, Xuyang ;
Flores-Canales, Jose C. ;
Fortunato, Santo ;
Gitter, Anthony ;
Gorska, Anna ;
Guan, Yuanfang ;
Guenoche, Alain ;
Gomez, Sergio ;
Hamza, Hatem ;
Hartmann, Andras ;
He, Shan ;
Heijs, Anton .
NATURE METHODS, 2019, 16 (09) :843-+
[4]   Imputation of the Rare HOXB13 G84E Mutation and Cancer Risk in a Large Population-Based Cohort [J].
Hoffmann, Thomas J. ;
Sakoda, Lori C. ;
Shen, Ling ;
Jorgenson, Eric ;
Habel, Laurel A. ;
Liu, Jinghua ;
Kvale, Mark N. ;
Asgari, Maryam M. ;
Banda, Yambazi ;
Corley, Douglas ;
Kushi, Lawrence H. ;
Quesenberry, Charles P., Jr. ;
Schaefer, Catherine ;
Van den Eeden, Stephen K. ;
Risch, Neil ;
Witte, John S. .
PLOS GENETICS, 2015, 11 (01)
[5]   Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence [J].
Holzinger, Andreas ;
Dehmer, Matthias ;
Emmert-Streib, Frank ;
Cucchiara, Rita ;
Augenstein, Isabelle ;
Del Ser, Javier ;
Samek, Wojciech ;
Jurisica, Igor ;
Diaz-Rodriguez, Natalia .
INFORMATION FUSION, 2022, 79 :263-278
[6]   Towards multi-modal causability with Graph Neural Networks enabling information fusion for explainable AI [J].
Holzinger, Andreas ;
Malle, Bernd ;
Saranti, Anna ;
Pfeifer, Bastian .
INFORMATION FUSION, 2021, 71 :28-37
[7]   Interactive machine learning: experimental evidence for the human in the algorithmic loop: A case study on Ant Colony Optimization [J].
Holzinger, Andreas ;
Plass, Markus ;
Kickmeier-Rust, Michael ;
Holzinger, Katharina ;
Crisan, Gloria Cerasela ;
Pintea, Camelia-M. ;
Palade, Vasile .
APPLIED INTELLIGENCE, 2019, 49 (07) :2401-2414
[8]   Integrated web visualizations for protein-protein interaction databases [J].
Jeanquartier, Fleur ;
Jean-Quartier, Claire ;
Holzinger, Andreas .
BMC BIOINFORMATICS, 2015, 16
[9]   A Survey on Knowledge Graphs: Representation, Acquisition, and Applications [J].
Ji, Shaoxiong ;
Pan, Shirui ;
Cambria, Erik ;
Marttinen, Pekka ;
Yu, Philip S. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) :494-514
[10]  
Koller D., 2009, Probabilistic Graphical Models: Principles and Techniques, DOI DOI 10.5555/1795555