Bioinspired in-sensor visual adaptation for accurate perception

被引:442
作者
Liao, Fuyou [1 ,2 ]
Zhou, Zheng [3 ]
Kim, Beom Jin [4 ]
Chen, Jiewei [1 ,2 ]
Wang, Jingli [1 ,2 ,5 ]
Wan, Tianqing [2 ]
Zhou, Yue [2 ]
Hoang, Anh Tuan [4 ]
Wang, Cong [1 ,2 ]
Kang, Jinfeng [3 ]
Ahn, Jong-Hyun [4 ]
Chai, Yang [1 ,2 ,6 ]
机构
[1] Hong Kong Polytech Univ Shenzhen Res Inst, Shenzhen, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Peoples R China
[3] Peking Univ, Inst Microelect, Beijing, Peoples R China
[4] Yonsei Univ, Sch Elect & Elect Engn, Seoul, South Korea
[5] Fudan Univ, Frontier Inst Chip & Syst, Shanghai, Peoples R China
[6] Hong Kong Polytech Univ, Res Inst Intelligent Wearable Syst, Hong Kong, Peoples R China
基金
新加坡国家研究基金会; 中国博士后科学基金;
关键词
MOS2; PHOTODETECTORS; ELECTRONICS;
D O I
10.1038/s41928-022-00713-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Charge trapping mechanisms in molybdenum-disulfide-based transistors can be used to mimic the adaptive behaviour of human eyes, allowing vision sensors to be created with high dynamic range. Machine vision systems that capture images for visual inspection and identification tasks have to be able to perceive a scene under a range of illumination conditions. To achieve this, current systems use circuitry and algorithms that compromise efficiency and increase complexity. Here we report bioinspired vision sensors that are based on molybdenum disulfide phototransistors and exhibit time-varying activation and inhibition characteristics. Charge trap states are intentionally introduced into the surface of molybdenum disulfide, enabling the dynamic modulation of the photosensitivity of the devices under different lighting conditions. The light-intensity-dependent characteristics of the sensors match Weber's law in which the perceived change in stimuli is proportional to the light stimuli. The approach offers visual adaptation with highly localized and dynamic modulation of photosensitivity under different lighting conditions at the pixel level, creating an effective perception range of up to 199 dB. The phototransistor arrays exhibit image contrast enhancement for both scotopic and photopic adaptation.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 43 条
[1]  
[Anonymous], 1966, Elements of Psychophysics
[2]   Nonvolatile ferroelectric field-effect transistors [J].
Chai, Xiaojie ;
Jiang, Jun ;
Zhang, Qinghua ;
Hou, Xu ;
Meng, Fanqi ;
Wang, Jie ;
Gu, Lin ;
Zhang, David Wei ;
Jiang, An Quan .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   In-sensor computing for machine vision [J].
Chai, Yang .
NATURE, 2020, 579 (7797) :32-33
[4]   Multibit Data Storage States Formed in Plasma-Treated MoS2 Transistors [J].
Chen, Mikai ;
Nam, Hongsuk ;
Wi, Sungjin ;
Priessnitz, Greg ;
Gunawan, Ivan Manuel ;
Liang, Xiaogan .
ACS NANO, 2014, 8 (04) :4023-4032
[5]   Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system [J].
Choi, Changsoon ;
Leem, Juyoung ;
Kim, Min Sung ;
Taqieddin, Amir ;
Cho, Chullhee ;
Cho, Kyoung Won ;
Lee, Gil Ju ;
Seung, Hyojin ;
Jong, Hyung ;
Song, Young Min ;
Hyeon, Taeghwan ;
Aluru, Narayana R. ;
Nam, SungWoo ;
Kim, Dae-Hyeong .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array [J].
Choi, Changsoon ;
Choi, Moon Kee ;
Liu, Siyi ;
Kim, Min Sung ;
Park, Ok Kyu ;
Im, Changkyun ;
Kim, Jaemin ;
Qin, Xiaoliang ;
Lee, Gil Ju ;
Cho, Kyoung Won ;
Kim, Myungbin ;
Joh, Eehyung ;
Lee, Jongha ;
Son, Donghee ;
Kwon, Seung-Hae ;
Jeon, Noo Li ;
Song, Young Min ;
Lu, Nanshu ;
Kim, Dae-Hyeong .
NATURE COMMUNICATIONS, 2017, 8
[7]   Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane [J].
Choi, Minwoo ;
Bae, Sa-Rang ;
Hu, Luhing ;
Anh Tuan Hoang ;
Kim, Soo Young ;
Ahn, Jong-Hyun .
SCIENCE ADVANCES, 2020, 6 (28)
[8]  
Darmont A., 2013, SOC PHOTOOPTICAL INS
[9]   Photogating in Low Dimensional Photodetectors [J].
Fang, Hehai ;
Hu, Weida .
ADVANCED SCIENCE, 2017, 4 (12)
[10]  
Fiori G, 2014, NAT NANOTECHNOL, V9, P768, DOI [10.1038/nnano.2014.207, 10.1038/NNANO.2014.207]