Combinatorial description of a moduli space of curves and of extremal polynomials

被引:7
作者
Bogatyrëv, AB [1 ]
机构
[1] RAS, Inst Numer Math, Moscow 117901, Russia
关键词
D O I
10.1070/SM2003v194n10ABEH000772
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the description of extremal polynomials (that is; the typical solutions of least deviation problems) one uses real hyperelliptic curves. A partitioning of the moduli space of such curves into cells enumerated by trees is considered. As an application of these techniques the range of the period map of the universal cover of the moduli space is-explicitly calculated. In addition; extremal polynomials are enumerated by weighted graphs.
引用
收藏
页码:1451 / 1473
页数:23
相关论文
共 12 条
[1]  
[Anonymous], 1978, Principles of algebraic geometry
[2]  
[Anonymous], 1976, SOME QUESTIONS APPRO
[3]  
Birman J. S., 1975, Princeton Univ. Press,, V82
[4]  
Bogatyrev A. B., 2003, MAT SBORNIK, V194, P3, DOI [10.4213/sm725, DOI 10.4213/SM725]
[5]  
BOGATYREV AB, 2002, SB MATH, V193
[6]  
BOGATYREV AB, 1999, MAT SBORNIK, V190, P15
[7]  
CHEKHOV LO, 2001, TEOR MAT FIZ, V127, P179
[8]  
MEJMAN NN, 1960, DOKL AKAD NAUK SSSR, V130, P257
[9]  
Sodin M. L., 1992, ALGEBR ANAL, V4, p[1, 201]
[10]  
Strebel K., 1984, QUADRATIC DIFFERENTI