A remark on a curvature gap for minimal surfaces in the ball

被引:7
作者
Barbosa, Ezequiel [1 ]
Viana, Celso [2 ]
机构
[1] Univ Fed Minas Gerais UTMG, Caixa Postal 702, Belo Horizonte 30123970, MG, Brazil
[2] UCL, Dept Math, Gower St, London WC1E 6BT, England
关键词
THEOREMS;
D O I
10.1007/s00209-019-02352-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend to higher codimension earlier characterization of the equatorial disk and the critical catenoid by a pinching condition on the length of their second fundamental form among free boundary minimal surfaces in the three dimensional Euclidean ball due to L. Ambrozio and I. Nunes.
引用
收藏
页码:713 / 720
页数:8
相关论文
共 10 条
[1]  
Ambrozio L., COMMUNICATIONS ANAL
[2]  
Chern S. S., 1970, FUNCTIONAL ANAL RELA
[3]   Sharp eigenvalue bounds and minimal surfaces in the ball [J].
Fraser, Ailana ;
Schoen, Richard .
INVENTIONES MATHEMATICAE, 2016, 203 (03) :823-890
[4]   Uniqueness Theorems for Free Boundary Minimal Disks in Space Forms [J].
Fraser, Ailana ;
Schoen, Richard .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (17) :8268-8274
[5]   The first Steklov eigenvalue, conformal geometry, and minimal surfaces [J].
Fraser, Ailana ;
Schoen, Richard .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4011-4030
[6]  
HARDT R, 1989, J DIFFER GEOM, V30, P505, DOI 10.4310/jdg/1214443599
[7]   LOCAL RIGIDITY THEOREMS FOR MINIMAL HYPERSURFACES [J].
LAWSON, HB .
ANNALS OF MATHEMATICS, 1969, 89 (01) :187-&
[8]   The uniqueness of the helicoid [J].
Meeks, WH ;
Rosenberg, H .
ANNALS OF MATHEMATICS, 2005, 161 (02) :727-758
[9]  
Perez J., 2008, HDB GEOMETRICAL ANAL, V7, P301
[10]  
Spivak M., 1965, CALCULUS MANIFOLDS M