van der Waals 2D metallic materials for low-resistivity interconnects

被引:3
作者
Hu, Yaoqiao [1 ]
Conlin, Patrick [1 ]
Lee, Yeonghun [1 ]
Kim, Dongwook [1 ]
Cho, Kyeongjae [1 ]
机构
[1] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
基金
新加坡国家研究基金会;
关键词
TRANSITION; RC;
D O I
10.1039/d1tc05872j
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
van der Waals 2D metallic materials offer a solution to the problem of poor scalability of elemental metals within ever-downscaling device interconnects due to their absence of surface scattering. Here we evaluate the viability of a selection of 2D metals, including transition metal dichalcogenides (TMDs), transition metal carbides/nitrides (MAX), and metal oxyhalides/oxyhydroxides (MOX/MOOH), for use as low resistivity interconnect materials in the extremely scaled geometries (critical dimension d < 10 nm). A widely adopted figure of merit, the product of resistivity and mean free path (rho lambda), is used as the basis for a series of first-principles investigations. Our results show that many of these 2D metallic compounds exhibit comparable or even superior conductivities to elemental bulk Cu and Ru in the limit of sub-10 nm narrow wires. The search criterion for low resistivity 2D metals reveals that the conductivity is determined by the Fermi surface area, which characterizes the available electronic states that can contribute to the electrical conduction. Valence electron density and the Fermi surface shape are identified as the two primary factors governing the figure of merit rho lambda. These findings could provide useful insights toward identifying a practical descriptor for further discovering highly conductive 2D metals. Given that 2D materials provide high metallic conductivity even at decreased scale, these candidates could potentially replace Ru for interconnects in future integrated circuits.
引用
收藏
页码:5627 / 5635
页数:9
相关论文
共 50 条
  • [1] Utilization of the van der Waals Gap of 2D Materials
    Que, Haifeng
    Jiang, Huaning
    Wang, Xingguo
    Zhai, Pengbo
    Meng, Lingjia
    Zhang, Peng
    Gong, Yongji
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (11)
  • [2] Superlattices based on van der Waals 2D materials
    Ryu, Yu Kyoung
    Frisenda, Riccardo
    Castellanos-Gomez, Andres
    CHEMICAL COMMUNICATIONS, 2019, 55 (77) : 11498 - 11510
  • [3] Advancements in Van der Waals Heterostructures Based on 2D Semiconductor Materials
    Zulfiqar, Muhammad Wajid
    Nisar, Sobia
    Kim, Deok-kee
    Dastgeer, Ghulam
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (01) : 41 - 63
  • [4] 2D Van Der Waals Ferroelectric Materials and Devices for Neuromorphic Computing
    Wen, Zhixing
    Chen, Jiangang
    Zhang, Qirui
    Wang, Ge
    Wang, Xuemei
    Yang, Fan
    Liu, Qing
    Luo, Xiao
    Liu, Fucai
    SMALL, 2025,
  • [5] Redox Photochemistry on Van Der Waals Surfaces for Reversible Doping in 2D Materials
    Huang, Lingli
    Yang, Tiefeng
    Wong, Lok Wing
    Zheng, Fangyuan
    Chen, Xin
    Lai, Ka Hei
    Liu, Haijun
    Quoc Huy Thi
    Shen, Dong
    Lee, Chun-Sing
    Deng, Qingming
    Zhao, Jiong
    Thuc Hue Ly
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (16)
  • [6] Hematene: a 2D magnetic material in van der Waals or non-van der Waals heterostructures
    Gonzalez, R. I.
    Mella, J.
    Diaz, P.
    Allende, S.
    Vogel, E. E.
    Cardenas, C.
    Munoz, F.
    2D MATERIALS, 2019, 6 (04)
  • [7] Structural superlubricity in 2D van der Waals heterojunctions
    Yuan, Jiahao
    Yang, Rong
    Zhang, Guangyu
    NANOTECHNOLOGY, 2022, 33 (10)
  • [8] Spontaneous heteroassembly of 2D semiconducting van der Waals materials in random solution phase
    Sasikala, Suchithra Padmajan
    Kim, Sung Hyun
    Park, Cheolmin
    Kim, Dong-Ha
    Jung, Hong Ju
    Jung, Juhyung
    Lee, Hojin
    Li, Panpan
    Kim, Hongjun
    Hong, Seungbum
    Choi, Sung-Yool
    Kim, Il-Doo
    Prabhakaran, Prem
    Lee, Kwang-Sup
    Kim, Sang Ouk
    MATERIALS TODAY, 2022, 58 : 18 - 29
  • [9] Advancing Nanoelectronics Applications: Progress in Non-van der Waals 2D Materials
    Gao, Hongze
    Wang, Zifan
    Cao, Jun
    Lin, Yuxuan Cosmi
    Ling, Xi
    ACS NANO, 2024, 18 (26) : 16343 - 16358
  • [10] Synthesis, engineering, and theory of 2D van der Waals magnets
    Blei, M.
    Lado, J. L.
    Song, Q.
    Dey, D.
    Erten, O.
    Pardo, V.
    Comin, R.
    Tongay, S.
    Botana, A. S.
    APPLIED PHYSICS REVIEWS, 2021, 8 (02):