van der Waals 2D metallic materials for low-resistivity interconnects

被引:3
|
作者
Hu, Yaoqiao [1 ]
Conlin, Patrick [1 ]
Lee, Yeonghun [1 ]
Kim, Dongwook [1 ]
Cho, Kyeongjae [1 ]
机构
[1] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
基金
新加坡国家研究基金会;
关键词
TRANSITION; RC;
D O I
10.1039/d1tc05872j
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
van der Waals 2D metallic materials offer a solution to the problem of poor scalability of elemental metals within ever-downscaling device interconnects due to their absence of surface scattering. Here we evaluate the viability of a selection of 2D metals, including transition metal dichalcogenides (TMDs), transition metal carbides/nitrides (MAX), and metal oxyhalides/oxyhydroxides (MOX/MOOH), for use as low resistivity interconnect materials in the extremely scaled geometries (critical dimension d < 10 nm). A widely adopted figure of merit, the product of resistivity and mean free path (rho lambda), is used as the basis for a series of first-principles investigations. Our results show that many of these 2D metallic compounds exhibit comparable or even superior conductivities to elemental bulk Cu and Ru in the limit of sub-10 nm narrow wires. The search criterion for low resistivity 2D metals reveals that the conductivity is determined by the Fermi surface area, which characterizes the available electronic states that can contribute to the electrical conduction. Valence electron density and the Fermi surface shape are identified as the two primary factors governing the figure of merit rho lambda. These findings could provide useful insights toward identifying a practical descriptor for further discovering highly conductive 2D metals. Given that 2D materials provide high metallic conductivity even at decreased scale, these candidates could potentially replace Ru for interconnects in future integrated circuits.
引用
收藏
页码:5627 / 5635
页数:9
相关论文
共 50 条
  • [1] 2D materials and van der Waals heterostructures
    Novoselov, K. S.
    Mishchenko, A.
    Carvalho, A.
    Castro Neto, A. H.
    SCIENCE, 2016, 353 (6298)
  • [2] Superlattices based on van der Waals 2D materials
    Ryu, Yu Kyoung
    Frisenda, Riccardo
    Castellanos-Gomez, Andres
    CHEMICAL COMMUNICATIONS, 2019, 55 (77) : 11498 - 11510
  • [3] Utilization of the van der Waals Gap of 2D Materials
    Que, Haifeng
    Jiang, Huaning
    Wang, Xingguo
    Zhai, Pengbo
    Meng, Lingjia
    Zhang, Peng
    Gong, Yongji
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (11)
  • [4] Luminescence in 2D Materials and van der Waals Heterostructures
    Jie, Wenjing
    Yang, Zhibin
    Bai, Gongxun
    Hao, Jianhua
    ADVANCED OPTICAL MATERIALS, 2018, 6 (10):
  • [5] Emerging 2D Materials and Their Van Der Waals Heterostructures
    Di Bartolomeo, Antonio
    NANOMATERIALS, 2020, 10 (03)
  • [6] Disorder in van der Waals heterostructures of 2D materials
    Rhodes, Daniel
    Chae, Sang Hoon
    Ribeiro-Palau, Rebeca
    Hone, James
    NATURE MATERIALS, 2019, 18 (06) : 541 - 549
  • [7] Disorder in van der Waals heterostructures of 2D materials
    Daniel Rhodes
    Sang Hoon Chae
    Rebeca Ribeiro-Palau
    James Hone
    Nature Materials, 2019, 18 : 541 - 549
  • [8] Intercorrelated ferroelectrics in 2D van der Waals materials
    Liang, Yan
    Shen, Shiying
    Huang, Baibiao
    Dai, Ying
    Ma, Yandong
    MATERIALS HORIZONS, 2021, 8 (06) : 1683 - 1689
  • [9] Functionalizing nanophotonic structures with 2D van der Waals materials
    Meng, Yuan
    Zhong, Hongkun
    Xu, Zhihao
    He, Tiantian
    Kim, Justin S.
    Han, Sangmoon
    Kim, Sunok
    Park, Seoungwoong
    Shen, Yijie
    Gong, Mali
    Xiao, Qirong
    Bae, Sang-Hoon
    NANOSCALE HORIZONS, 2023, 8 (10) : 1345 - 1365
  • [10] 2D materials and van der Waals heterojunctions for neuromorphic computing
    Zhang, Zirui
    Yang, Dongliang
    Li, Huihan
    Li, Ce
    Wang, Zhongrui
    Sun, Linfeng
    Yang, Heejun
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (03):