Deep multi-feature fusion network for remote sensing images

被引:7
|
作者
Xiong, Wei [1 ]
Xiong, Zhenyu [1 ]
Cui, Yaqi [1 ]
Lv, Yafei [1 ]
机构
[1] Naval Aviat Univ, Res Inst Informat Fus, Yantai, Peoples R China
基金
中国国家自然科学基金;
关键词
Image processing - Image fusion - Classification (of information) - Deep learning - Semantics - Convolutional neural networks;
D O I
10.1080/2150704X.2020.1743376
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Learning discriminative and robust features is crucial in remote sensing image processing. Many of the currently used approaches are based on Convolutional Neural Networks (CNNs). However, such approaches may not effectively capture various different semantic objects of remote sensing images. To overcome this limitation, we propose a novel end-to-end deep multi-feature fusion network (DMFN). DMFN combines two different deep architecture branches for feature representations; the global and local branch. The global branch, which consists of three losses, is used to learn discriminative features from the whole image. The local branch is then used in the partitioning of the entire image into multiple strips in order to obtain local features. The two branches are then combined, used to learn fusion feature representations for the image. The proposed method is an end-to-end framework during training. Comprehensive validation experiments on two public datasets indicate that relative to existing deep learning approaches, this strategy is superior for both retrieval and classification tasks.
引用
收藏
页码:563 / 571
页数:9
相关论文
共 50 条
  • [41] Building change detection from multi-source remote sensing images based on multi-feature fusion and extreme learning machine
    Wang, Chang
    Wang, Xu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (06) : 2246 - 2257
  • [42] Multi-feature fusion network for person reidentification
    Wang, Xihe
    Zhang, Yongjun
    Xu, Yujie
    Cui, Zhongwei
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [43] A NOVEL DEEP FEATURE FUSION NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION
    Li, Yangyang
    Wang, Qi
    Liang, Xiaoxu
    Jiao, Licheng
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5484 - 5487
  • [44] The Remote Sensing Image Retrieval Based on Multi-feature
    Duan Jian-bo
    Ma Cai-hong
    Liu Shi-Bin
    Zhang Jing
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIX, 2013, 8892
  • [45] MULTI-SCALE FEATURE FUSION NETWORK FOR OBJECT DETECTION IN VHR OPTICAL REMOTE SENSING IMAGES
    Zhang, Wenhua
    Jiao, Licheng
    Liu, Xu
    Liu, Jia
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 330 - 333
  • [46] Multi-feature fusion gesture recognition based on deep convolutional neural network
    Yun Wei-guo
    Shi Qi-qi
    Wang Min
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2019, 34 (04) : 417 - 422
  • [47] Deep Learning-Based Multi-Feature Fusion for Communication and Radar Signal Sensing
    Li, Ting
    Liu, Tian
    Song, Zhangli
    Zhang, Lin
    Ma, Yiming
    ELECTRONICS, 2024, 13 (10)
  • [48] Remote Sensing Image Scene Classification Based on Deep Multi-branch Feature Fusion Network
    Zhang Tong
    Zheng En-rang
    Shen Jun-ge
    Gao An-tong
    ACTA PHOTONICA SINICA, 2020, 49 (05)
  • [49] Remote sensing image target detection based on a multi-scale deep feature fusion network
    Fan X.
    Yan W.
    Shi P.
    Zhang X.
    National Remote Sensing Bulletin, 2022, 26 (11): : 2292 - 2303
  • [50] ResCount: A Residual Feature Fusion Network for Ship Counting in Remote Sensing Images
    Yan, Kai
    Yang, Kai
    Huang, Jinghao
    Chen, Yaxiong
    Xiong, Shengwu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21