Ultrasound Shear Wave Elasticity Imaging With Spatio-Temporal Deep Learning

被引:13
作者
Neidhardt, Maximilian [1 ]
Bengs, Marcel [1 ]
Latus, Sarah [1 ]
Gerlach, Stefan [1 ]
Cyron, Christian J. [2 ]
Sprenger, Johanna [1 ]
Schlaefer, Alexander [1 ]
机构
[1] Hamburg Univ Technol, Inst Med Technol & Intelligent Syst, D-21073 Hamburg, Germany
[2] Hamburg Univ Technol, Dept Continuum & Mat Mech, Hamburg, Germany
关键词
Elasticity; Phantoms; Imaging; Ultrasonic imaging; Deep learning; Three-dimensional displays; Young's modulus; Elasticity imaging; 3D deep learning; high-speed ultrasound imaging; spatio-temporal data; soft tissue; QUANTITATIVE ASSESSMENT; SPEED ESTIMATION; ELASTOGRAPHY; BREAST; INDENTER; TISSUES; MODULI;
D O I
10.1109/TBME.2022.3168566
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Ultrasound shear wave elasticity imaging is a valuable tool for quantifying the elastic properties of tissue. Typically, the shear wave velocity is derived and mapped to an elasticity value, which neglects information such as the shape of the propagating shear wave or push sequence characteristics. We present 3D spatio-temporal CNNs for fast local elasticity estimation from ultrasound data. This approach is based on retrieving elastic properties from shear wave propagation within small local regions. A large training data set is acquired with a robot from homogeneous gelatin phantoms ranging from 17.42 kPa to 126.05 kPa with various push locations. The results show that our approach can estimate elastic properties on a pixelwise basis with a mean absolute error of 5.01(437) kPa. Furthermore, we estimate local elasticity independent of the push location and can even perform accurate estimates inside the push region. For phantoms with embedded inclusions, we report a 53.93% lower MAE (7.50 kPa) and on the background of 85.24% (1.64 kPa) compared to a conventional shear wave method. Overall, our method offers fast local estimations of elastic properties with small spatio-temporal window sizes.
引用
收藏
页码:3356 / 3364
页数:9
相关论文
共 43 条
[1]   DSWE-Net: A deep learning approach for shear wave elastography and lesion segmentation using single push acoustic radiation force [J].
Ahmed, Shahed ;
Kamal, Uday ;
Hasan, Md. Kamrul .
ULTRASONICS, 2021, 110
[2]   Mechanical Property Characterization of Prostate Cancer Using a Minimally Motorized Indenter in an Ex Vivo Indentation Experiment [J].
Ahn, Bum-Mo ;
Kim, Jung ;
Ian, Lorenzo ;
Rha, Kun-Ho ;
Kim, Hyung-Joo .
UROLOGY, 2010, 76 (04) :1007-1011
[3]   Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography [J].
Arda, Kemal ;
Ciledag, Nazan ;
Aktas, Elif ;
Aribas, Bilgin Kadri ;
Kose, Kenan .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2011, 197 (03) :532-536
[4]   Supersonic shear imaging: A new technique for soft tissue elasticity mapping [J].
Bercoff, J ;
Tanter, M ;
Fink, M .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2004, 51 (04) :396-409
[5]   Improved Shear Wave Group Velocity Estimation Method Based on Spatiotemporal Peak and Thresholding Motion Search [J].
Carrascal, Carolina Amador ;
Chen, Shigao ;
Manduca, Armando ;
Greenleaf, James F. ;
Urban, Matthew W. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2017, 64 (04) :660-668
[6]   Deep Convolutional Neural Networks for Displacement Estimation in ARFI Imaging [J].
Chan, Derek Y. ;
Morris, D. Cody ;
Polascik, Thomas J. ;
Palmeri, Mark L. ;
Nightingale, Kathryn R. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (07) :2472-2481
[7]   EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 2: Clinical Applications [J].
Cosgrove, D. ;
Piscaglia, F. ;
Bamber, J. ;
Bojunga, J. ;
Correas, J. -M. ;
Gilja, O. H. ;
Klauser, A. S. ;
Sporea, I. ;
Calliada, F. ;
Cantisani, V. ;
D'Onofrio, M. ;
Drakonaki, E. E. ;
Fink, M. ;
Friedrich-Rust, M. ;
Fromageau, J. ;
Havre, R. F. ;
Jenssen, C. ;
Ohlinger, R. ;
Saftoiu, A. ;
Schaefer, F. ;
Dietrich, C. F. .
ULTRASCHALL IN DER MEDIZIN, 2013, 34 (03) :238-253
[8]   Experimental validation of a flat punch indentation methodology calibrated against unconfined compression tests for determination of soft tissue biomechanics [J].
Delaine-Smith, R. M. ;
Burney, S. ;
Balkwill, F. R. ;
Knight, M. M. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2016, 60 :401-415
[9]   An unsupervised learning approach to ultrasound strain elastography with spatio-temporal consistency [J].
Delaunay, Remi ;
Hu, Yipeng ;
Vercauteren, Tom .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (17)
[10]   Learning Spatiotemporal Features with 3D Convolutional Networks [J].
Du Tran ;
Bourdev, Lubomir ;
Fergus, Rob ;
Torresani, Lorenzo ;
Paluri, Manohar .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4489-4497