Comparison of optoelectrical characteristics between Schottky and Ohmic contacts to β-Ga2O3 thin film

被引:56
作者
Liu, Zeng [1 ,2 ]
Zhi, Yusong [1 ,2 ]
Li, Shan [1 ,2 ]
Liu, Yuanyuan [3 ,6 ]
Tang, Xiao [4 ]
Yan, Zuyong [1 ,2 ]
Li, Peigang [1 ,2 ]
Li, Xiaohang [4 ]
Guo, Daoyou [5 ]
Wu, Zhenping [1 ]
Tang, Weihua [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Lab Informat Funct Mat & Devices, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] KAUST, Adv Semicond Lab, Thuwal 239556900, Saudi Arabia
[5] Zhejiang Sci Tech Univ, Dept Phys, Ctr Optoelect Mat & Devices, Hangzhou 310018, Peoples R China
[6] Chinese Acad Sci, Inst Semicond, Engn Res Ctr Semicond Integrated Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
beta-Ga2O3; Schottky and Ohmic contacts; optoelectrical characteristics; metal-organic chemical vapor deposition (MOCVD); SOLAR-BLIND PHOTODETECTOR; ULTRAVIOLET PHOTODETECTORS; BARRIER DIODES; TRANSPORT; OXIDE; INTERFACES; NANOWIRES;
D O I
10.1088/1361-6463/ab596f
中图分类号
O59 [应用物理学];
学科分类号
摘要
Schottky and Ohmic contacts are key matters affecting carrier transport in oxide semiconductor-based electrical and optical devices. For Ga2O3, the comparison of optoelectrical behaviors and the fundamental physical mechanism between these two contacts are not well known yet. In this work, beta-Ga2O3 thin films were grown via metal-organic chemical vapor deposition then deposited with symmetrical Ni/Au (Schottky) or Ti/Au (Ohmic) contacts. Optoelectrical measurements show that the Ohmic contacted device exhibits superior responsivities thanks to its higher photocurrents. Meanwhile, for the Schottky contacted device, firstly, it has a faster response speed, and secondly it exhibits larger photo-to-dark current ratios owing to their low dark current. Specifically, the voltage- and light intensity-dependent responsivity and detectivities of the Schottky and Ohmic contacted devices were measured and discussed under the consideration of different voltages and UV light intensities.
引用
收藏
页数:8
相关论文
共 72 条
[61]   CURRENT TRANSPORT IN METAL-SEMICONDUCTOR-METAL (MSM) STRUCTURES [J].
SZE, SM ;
COLEMAN, DJ ;
LOYA, A .
SOLID-STATE ELECTRONICS, 1971, 14 (12) :1209-&
[62]  
Sze SM., 2021, Physics of Semiconductor Devices
[63]   THE ANTOINE EQUATION FOR VAPOR-PRESSURE DATA [J].
THOMSON, GW .
CHEMICAL REVIEWS, 1946, 38 (01) :1-39
[64]   ELECTRON-TRANSPORT AT METAL-SEMICONDUCTOR INTERFACES - GENERAL-THEORY [J].
TUNG, RT .
PHYSICAL REVIEW B, 1992, 45 (23) :13509-13523
[65]   Oxygen vacancies and donor impurities in β-Ga2O3 [J].
Varley, J. B. ;
Weber, J. R. ;
Janotti, A. ;
Van de Walle, C. G. .
APPLIED PHYSICS LETTERS, 2010, 97 (14)
[66]   β-Ga2O3 nanorod arrays with high light-to-electron conversion for solar-blind deep ultraviolet photodetection [J].
Wang, Shunli ;
Chen, Kai ;
Zhao, Hailin ;
He, Chenran ;
Wu, Chao ;
Guo, Daoyou ;
Zhao, Nie ;
Ungar, Goran ;
Shen, Jingqin ;
Chu, Xulong ;
Li, Peigang ;
Tang, Weihua .
RSC ADVANCES, 2019, 9 (11) :6064-6069
[67]   The electronic structure and magnetic property of the Mn doped β-Ga2O3 [J].
Wang, Xiaolong ;
Quhe, Ruge ;
Zhi, Yusong ;
Liu, Zeng ;
Huang, Yuanqi ;
Dai, Xianqi ;
Tang, Yanan ;
Wu, Zhenping ;
Tang, Weihua .
SUPERLATTICES AND MICROSTRUCTURES, 2019, 125 :330-337
[68]   Gallium oxide solar-blind ultraviolet photodetectors: a review [J].
Xu, Jingjing ;
Zheng, Wei ;
Huang, Feng .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (29) :8753-8770
[69]   Carrier Transport and Gain Mechanisms in β-Ga2O3-Based Metal-Semiconductor-Metal Solar-Blind Schottky Photodetectors [J].
Xu, Yang ;
Chen, Xuanhu ;
Zhou, Dong ;
Ren, Fangfang ;
Zhou, Jianjun ;
Bai, Song ;
Lu, Hai ;
Gu, Shulin ;
Zhang, Rong ;
Zheng, Youdou ;
Ye, Jiandong .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (05) :2276-2281
[70]   An Overview of the Ultrawide Bandgap Ga2O3 Semiconductor-Based Schottky Barrier Diode for Power Electronics Application [J].
Xue HuiWen ;
He QiMing ;
Jian GuangZhong ;
Long ShiBing ;
Pang Tao ;
Liu Ming .
NANOSCALE RESEARCH LETTERS, 2018, 13