Lab-on-fiber: plasmonic nano-arrays for sensing

被引:95
作者
Wang, Qi [1 ,2 ]
Wang, Lei [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
基金
国家重点研发计划;
关键词
ENHANCED RAMAN-SCATTERING; OPTICAL-FIBERS; SURFACE; RESONANCE; SENSOR; PERFORMANCE; FABRICATION; FACETS; PROBES; LSPR;
D O I
10.1039/d0nr00040j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For sensors based on the electromagnetic resonance whether the surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR), enhancing the light-matter interactions is the most critical and important way to improve their performance. Plasmonic nano-arrays are a kind of periodic metal or dielectric nanostructure formed by nanofabrication technology and can effectively enhance the light-matter interactions by tuning structural parameters to cause different optical effects due to their ultra-high degree of freedom. At the same time, a plug-and-play, remote microsensor suitable for limited environments (such as in vivo systems) may be realized due to the rise of lab-on-fiber technology and the progress of nanofabrication technology for unconventional substrates (such as an optical fiber tip). In this paper, the advantages and disadvantages of different nanofabrication technologies are briefly introduced and compared firstly, and then the applications of optical fiber sensors (OFS) based on different plasmonic nano-arrays are reviewed. Plasmonic nano-array OFS are divided into two categories: refractive index sensors based on the sensitivity of the array to the surrounding environment and surface enhanced Raman scattering (SERS) sensors based on the enhancement ability of the local electric field around the array. In this review, the present sensors are compared and analyzed from the aspects of the geometry, material and dimensions of plasmonic nano-arrays and the main research directions and progress are summarized. Finally, the future development trend is proposed.
引用
收藏
页码:7485 / 7499
页数:15
相关论文
共 108 条
[1]   Coupled surface plasmon resonance sensor with sensitive liquid crystal layer [J].
Abu-Abed, Alaeddin S. ;
Alboon, Shadi A. ;
Lin, Yongbin ;
Lindquist, Robert G. .
EMERGING LIQUID CRYSTAL TECHNOLOGIES VI, 2011, 7955
[2]   Microgel assisted Lab-on-Fiber Optrode [J].
Aliberti, A. ;
Ricciardi, A. ;
Giaquinto, M. ;
Micco, A. ;
Bobeico, E. ;
La Ferrara, V. ;
Ruvo, M. ;
Cutolo, A. ;
Cusano, A. .
SCIENTIFIC REPORTS, 2017, 7
[3]   Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips [J].
Andrade, Gustavo F. S. ;
Hayashi, Juliano G. ;
Rahman, Mohammad M. ;
Salcedo, Walter J. ;
Cordeiro, Cristiano M. B. ;
Brolo, Alexandre G. .
PLASMONICS, 2013, 8 (02) :1113-1121
[4]   Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing [J].
Andrade, Gustavo F. S. ;
Fan, MeiKun ;
Brolo, Alexandre G. .
BIOSENSORS & BIOELECTRONICS, 2010, 25 (10) :2270-2275
[5]   Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing [J].
Antohe, Iulia ;
Spasic, Dragana ;
Delport, Filip ;
Li, Jiaqi ;
Lammertyn, Jeroen .
NANOTECHNOLOGY, 2017, 28 (21)
[6]  
Caisong D., 2018, CHEM J CHINESE U, V39, P708
[7]   An ultra wideband-high spatial resolution-compact electric field sensor based on Lab-on-Fiber technology [J].
Calero, V. ;
Suarez, M. -A. ;
Salut, R. ;
Baida, F. ;
Caspar, A. ;
Behague, F. ;
Courjal, N. ;
Galtier, L. ;
Gillette, L. ;
Duvillaret, L. ;
Gaborit, G. ;
Bernal, M. -P. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[8]   Optical Fiber-Based Surface-Enhanced Raman Scattering Sensor Using Au Nanovoid Arrays [J].
Chang, Shih-Hsin ;
Nyagilo, James ;
Wu, Jiaqi ;
Hao, Yaowu ;
Dave, Digant P. .
PLASMONICS, 2012, 7 (03) :501-508
[9]   Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes [J].
Consales, Marco ;
Ricciardi, Armando ;
Crescitelli, Alessio ;
Esposito, Emanuela ;
Cutolo, Antonello ;
Cusano, Andrea .
ACS NANO, 2012, 6 (04) :3163-3170
[10]   Lab on Fiber Technology: Towards Multifunctional Optical Nanosensors [J].
Crescitelli, A. ;
Ricciardi, A. ;
Consales, M. ;
Esposito, E. ;
Cutolo, A. ;
Cusano, A. .
22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3, 2012, 8421