Quadratic stabilization with an H-infinity performance bound of uncertain linear-time-varying systems

被引:2
作者
Amato, F
Pironti, A
机构
[1] Dipto. di Informatica e Sistemistica, Univ. Studi Napoli Federico II, 80125 Napoli
关键词
linear systems; time-varying systems; uncertain systems; quadratic stabilization; H-infinity optimal control;
D O I
10.1016/0167-6911(96)00018-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we deal with linear-time-varying systems subject to uncertain parameters in the so-called one block, norm bounded form. We consider the problem of designing a controller which guarantees the quadratic stabilization of the closed-loop system while keeping the norm of the operator mapping the exogenus input to the controlled output under a prespecified level. Necessary and sufficient conditions for the existence of such a controller are given.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 13 条
[1]   Necessary and sufficient conditions for quadratic stability and stabilizability of uncertain linear time-varying systems [J].
Amato, F ;
Pironti, A ;
Scala, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (01) :125-128
[2]   STABILIZATION OF UNCERTAIN SYSTEMS VIA LINEAR-CONTROL [J].
BARMISH, BR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (08) :848-850
[3]  
Brockett R. W., 1970, FINITE DIMENSIONAL L
[4]  
CORDESS M, 1993, LECT NOTES CONTROL I, V193, P181
[5]   STABILITY RADII OF LINEAR-SYSTEMS [J].
HINRICHSEN, D ;
PRITCHARD, AJ .
SYSTEMS & CONTROL LETTERS, 1986, 7 (01) :1-10
[6]   ROBUSTNESS OF STABILITY OF TIME-VARYING LINEAR-SYSTEMS [J].
HINRICHSEN, D ;
ILCHMANN, A ;
PRITCHARD, AJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 82 (02) :219-250
[7]   ROBUST STABILIZATION OF UNCERTAIN LINEAR-SYSTEMS - QUADRATIC STABILIZABILITY AND H INFINITY-CONTROL THEORY [J].
KHARGONEKAR, PP ;
PETERSEN, IR ;
ZHOU, KM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (03) :356-361
[8]   A GAME THEORETIC APPROACH TO H-INFINITY CONTROL FOR TIME-VARYING SYSTEMS [J].
LIMEBEER, DJN ;
ANDERSON, BDO ;
KHARGONEKAR, PP ;
GREEN, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (02) :262-283
[9]  
PETERSEN LR, 1986, SYSTEMS CONTROL LETT, V8, P351
[10]   WORST-CASE DESIGN IN THE TIME DOMAIN - THE MAXIMUM PRINCIPLE AND THE STANDARD H-INFINITY PROBLEM [J].
TADMOR, G .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1990, 3 (04) :301-324