Fast Chebyshev-polynomial method for simulating the time evolution of linear dynamical systems

被引:12
作者
Loh, YL [1 ]
Taraskin, SN
Elliott, SR
机构
[1] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[2] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.056706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a fast method for simulating the time evolution of any linear dynamical system possessing eigenmodes. This method does not require an explicit calculation of the eigenvectors and eigenfrequencies, and is based on a Chebyshev polynomial expansion of the formal operator matrix solution in the eigenfrequency domain. It does not suffer from the limitations of ordinary time-integration methods, and can be made accurate to almost machine precision. Among its possible applications are harmonic classical mechanical systems, quantum diffusion, and stochastic transport theory. An example of its use is given for the problem of vibrational wave-packet propagation in a disordered lattice.
引用
收藏
页码:567061 / 5670614
页数:14
相关论文
共 29 条
[1]   Evolution of a vibrational wave packet on a disordered chain [J].
Allen, PB ;
Kelner, J .
AMERICAN JOURNAL OF PHYSICS, 1998, 66 (06) :497-506
[2]   THERMAL-CONDUCTIVITY OF DISORDERED HARMONIC SOLIDS [J].
ALLEN, PB ;
FELDMAN, JL .
PHYSICAL REVIEW B, 1993, 48 (17) :12581-12588
[3]  
Brandes T, 1996, ANN PHYS-LEIPZIG, V5, P633
[4]   The Chebyshev propagator for quantum systems [J].
Chen, RQ ;
Guo, H .
COMPUTER PHYSICS COMMUNICATIONS, 1999, 119 (01) :19-31
[5]  
Frenkel D., 1996, UNDERSTANDING MOL SI
[6]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[7]  
Kittel C., 1987, QUANTUM THEORY SOLID
[8]   PROPAGATION METHODS FOR QUANTUM MOLECULAR-DYNAMICS [J].
KOSLOFF, R .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1994, 45 :145-178
[9]   LOCALIZATION - THEORY AND EXPERIMENT [J].
KRAMER, B ;
MACKINNON, A .
REPORTS ON PROGRESS IN PHYSICS, 1993, 56 (12) :1469-1564
[10]  
LANDAU LD, 1963, QUANTUM MECH NONRELA