From EMBER to FIRE: predicting high resolution baryon fields from dark matter simulations with deep learning

被引:19
作者
Bernardini, M. [1 ]
Feldmann, R. [1 ]
Angles-Alcazar, D. [2 ,3 ]
Boylan-Kolchin, M. [4 ]
Bullock, J. [5 ]
Mayer, L. [1 ]
Stadel, J. [1 ]
机构
[1] Univ Zurich, Ctr Theoret Astrophys & Cosmol, Inst Computat Sci, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Univ Connecticut, Dept Phys, 196 Auditorium Rd,U-3046, Storrs, CT 06269 USA
[3] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA
[4] Univ Texas Austin, Dept Astron, 2515 Speedway,Stop C1400, Austin, TX 78712 USA
[5] Univ Calif Irvine, Dept Phys & Astron, 4129 Reines Hall, Irvine, CA 92697 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
methods: numerical; methods: statistical; galaxies: haloes; dark matter; large-scale structure of Universe; LYMAN-ALPHA ABSORBERS; N-BODY SIMULATIONS; STAR-FORMATION; GALAXY FORMATION; NEUTRAL HYDROGEN; HIGH-REDSHIFT; INITIAL CONDITIONS; COLD FLOWS; QUIESCENT GALAXIES; MOLECULAR GAS;
D O I
10.1093/mnras/stab3088
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Hydrodynamic simulations provide a powerful, but computationally expensive, approach to study the interplay of dark matter and baryons in cosmological structure formation. Here, we introduce the EMulating Baryonic EnRichment (EMBER) Deep Learning framework to predict baryon fields based on dark matter-only simulations thereby reducing computational cost. EMBER comprises two network architectures, U-Net and Wasserstein Generative Adversarial Networks (WGANs), to predict 2D gas and HI densities from dark matter fields. We design the conditional WGANs as stochastic emulators, such that multiple target fields can be sampled from the same dark matter input. For training we combine cosmological volume and zoom-in hydrodynamical simulations from the Feedback in Realistic Environments (FIRE) project to represent a large range of scales. Our fiducial WGAN model reproduces the gas and HI power spectra within 10 per cent accuracy down to similar to 10 kpc scales. Furthermore, we investigate the capability of EMBER to predict high resolution baryon fields from low resolution dark matter inputs through upsampling techniques. As a practical application, we use this methodology to emulate high-resolution HI maps for a dark matter simulation of a L = 100 Mpc h(-1) comoving cosmological box. The gas content of dark matter haloes and the H I column density distributions predicted by EMBER agree well with results of large volume cosmological simulations and abundance matching models. Our method provides a computationally efficient, stochastic emulator for augmenting dark matter only simulations with physically consistent maps of baryon fields.
引用
收藏
页码:1323 / 1341
页数:19
相关论文
共 132 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Planck 2015 results XVII. Constraints on primordial non-Gaussianity [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Arrojam, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chiang, H. C. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[3]   Painting galaxies into dark matter haloes using machine learning [J].
Agarwal, Shankar ;
Dave, Romeel ;
Bassett, Bruce A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (03) :3410-3422
[4]   THROUGH THICK AND THIN-H I ABSORPTION IN COSMOLOGICAL SIMULATIONS [J].
Altay, Gabriel ;
Theuns, Tom ;
Schaye, Joop ;
Crighton, Neil H. M. ;
Vecchia, Claudio Dalla .
ASTROPHYSICAL JOURNAL LETTERS, 2011, 737 (02)
[5]   Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei [J].
Angles-Alcazar, Daniel ;
Faucher-Giguere, Claude-Andre ;
Quataert, Eliot ;
Hopkins, Philip F. ;
Feldmann, Robert ;
Torrey, Paul ;
Wetze, Andrew ;
Kereg, Dusan .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (01) :L109-L114
[6]   The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations [J].
Angles-Alcazar, Daniel ;
Faucher-Giguere, Claude-Andre ;
Keres, Dusan ;
Hopkins, Philip F. ;
Quataert, Eliot ;
Murray, Norman .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (04) :4698-4719
[7]   COSMOLOGICAL ZOOM SIMULATIONS OF z=2 GALAXIES: THE IMPACT OF GALACTIC OUTFLOWS [J].
Angles-Alcazar, Daniel ;
Dave, Romeel ;
Oezel, Feryal ;
Oppenheimer, Benjamin D. .
ASTROPHYSICAL JOURNAL, 2014, 782 (02)
[8]   Modelling the large-scale mass density field of the universe as a function of cosmology and baryonic physics [J].
Arico, Giovanni ;
Angulo, Raul E. ;
Hernandez-Monteagudo, Carlos ;
Contreras, Sergio ;
Zennaro, Matteo ;
Pellejero-Ibanez, Marcos ;
Rosas-Guevara, Yetli .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (04) :4800-4819
[9]  
Arjovsky M., 2017, PREPRINT ARXIV170104
[10]  
Arjovsky M, 2017, PR MACH LEARN RES, V70