Autoencoder-based Intrusion Detection System

被引:6
|
作者
Kamalov, Firuz [1 ]
Zgheib, Rita [2 ]
Leung, Ho Hon [3 ]
Al-Gindy, Ahmed [1 ]
Moussa, Sherif [1 ]
机构
[1] Canadian Univ Dubai, Dept Elect Engn, Dubai, U Arab Emirates
[2] Canadian Univ Dubai, Dept Comp Sci, Dubai, U Arab Emirates
[3] UAE Univ, Dept Math, Al Ain, U Arab Emirates
来源
2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021) | 2021年
关键词
intrusion detection systems; autoencoders; unsupervised learning; cybersecurity; anomaly detection;
D O I
10.1109/ICEET53442.2021.9659562
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the dependence of the modern society on networks, the importance of effective intrusion detection systems (IDS) cannot be underestimated. In this paper, we consider an autoencoder-based IDS for detecting distributed denial of service attacks (DDoS). The advantage of autoencoders over traditional machine learning methods is the ability to train on unlabeled data. As a result, autoencoders are well-suited for detecting unknown attacks. The key idea of the proposed approach is that anomalous traffic flows will have higher reconstruction loss which can be used to flag the intrusions. The results of numerical experiments show that the proposed method outperforms benchmark unsupervised algorithms in detecting DDoS attacks.
引用
收藏
页码:707 / 711
页数:5
相关论文
共 50 条
  • [1] Autoencoder-Based Solution for Intrusion Detection in Industrial Control System
    Russo, Silvio
    Zanasi, Claudio
    Marasco, Isabella
    Colajanni, Michele
    INTELLIGENT COMPUTING, VOL 2, 2024, 2024, 1017 : 530 - 543
  • [2] Stacked Autoencoder-Based Intrusion Detection System to Combat Financial Fraudulent
    Muhammad, Ghulam
    Hossain, M. Shamim
    Garg, Sahil
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (03) : 2071 - 2078
  • [3] Autoencoder-Based Network Intrusion Detection on Multiple Datasets
    Ciric, Vladimir
    Milojkovic, Aleksa
    Milosevic, Marija
    2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024, 2024, : 1281 - 1286
  • [4] Autoencoder-based deep metric learning for network intrusion detection
    Andresini, Giuseppina
    Appice, Annalisa
    Malerba, Donato
    INFORMATION SCIENCES, 2021, 569 (569) : 706 - 727
  • [5] Beyond vanilla: Improved autoencoder-based ensemble in-vehicle intrusion detection system
    Rajapaksha, Sampath
    Kalutarage, Harsha
    Al-Kadri, M. Omar
    Petrovski, Andrei
    Madzudzo, Garikayi
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 77
  • [6] RAIDS: Robust autoencoder-based intrusion detection system model against adversarial attacks
    Sarikaya, Alper
    Kilic, Banu Gunel
    Demirci, Mehmet
    COMPUTERS & SECURITY, 2023, 135
  • [7] An Autoencoder-Based Hybrid Detection Model for Intrusion Detection With Small-Sample Problem
    Wei, Nan
    Yin, Lihua
    Tan, Jingyi
    Ruan, Chuhong
    Yin, Chuang
    Sun, Zhe
    Luo, Xi
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2402 - 2412
  • [8] Stacked Autoencoder-Based Probabilistic Feature Extraction for On-Device Network Intrusion Detection
    Dao, Thi-Nga
    Lee, HyungJune
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (16): : 14438 - 14451
  • [9] Development of deep autoencoder-based anomaly detection system for HANARO
    Ryu, Seunghyoung
    Jeon, Byoungil
    Seo, Hogeon
    Lee, Minwoo
    Shin, Jin-Won
    Yu, Yonggyun
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2023, 55 (02) : 475 - 483
  • [10] Autoencoder-based Network Anomaly Detection
    Chen, Zhaomin
    Yeo, Chai Kiat
    Lee, Bu Sung
    Lau, Chiew Tong
    2018 WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 2018,