Thermally activated dependence of fatigue behaviour of CrMnFeCoNi high entropy alloy fabricated by laser powder-bed fusion

被引:19
作者
Jin, Minsoo [1 ]
Hosseini, Ehsan [2 ]
Holdsworth, Stuart R. [2 ]
Pham, Minh-Son [1 ]
机构
[1] Imperial Coll London, Dept Mat, Exhibit Rd, London SW7 2AZ, England
[2] Empa, Swiss Fed Labs Mat Sci & Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
关键词
High-entropy alloys; Additive manufacturing; Laser powder bed fusion; Themal fatigue; Cyclic plasticity; STRAIN-RATE SENSITIVITY; CRACK GROWTH-BEHAVIOR; AISI; 316L; MICROSTRUCTURAL EVOLUTION; EXPANSION COEFFICIENT; MECHANICAL-PROPERTIES; DISLOCATION BEHAVIOR; TENSILE PROPERTIES; INTERNAL-STRESSES; DEGREES-C;
D O I
10.1016/j.addma.2022.102600
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The CrMnFeCoNi high-entropy alloy demonstrates a promising potential for applications over a range of temperature. The alloy also shows excellent printability to be fabricated by additive manufacturing for complex structures. Nevertheless, there are limited studies on the thermo-mechanical behaviour of the alloy, in particular when fabricated by laser powder-bed fusion. This study provides an in-depth understanding of the relationship between as-built cellular microstructures and fatigue behaviour at a range of temperatures (22-600 degrees C) in particular concerning the stability of dislocation cells and thermo-mechanical dependence of the fatigue behaviour of the alloy. At all tested temperatures, the alloy exhibits a very short duration cyclic hardening with a low hardening rate followed by a cyclic softening. The high density of dislocations already existing in as-built condition were able to accommodate most of the prescribed strain. Hence, only a small number of mobile dislocations needs to be generated, causing a short cyclic hardening phase. Upon further loading, the back stress associated with the long-range stress field was dominant factor governing the cyclic softening behaviour. The similitude relationship provided insights into the stability of as-built cells, in particular it explains why the size of as-built cells did not change during cyclic loading at 22 degrees C. The significant reduction in dislocation density due to the increased annihilation rate and untanglement of dislocation substructures thanks mainly to thermal assistance at elevated temperatures led to a decrease in cyclic strength and related properties (yield stress, friction and back stress, hysteresis loop shape parameter and energy per cycle). The LPBF HEA shows an insignificant strain rate dependence of the primary cyclic hardening and softening in the range of 10(-3) s(-1) and 10(-2) s(-1). However, the dynamic strain ageing results in a secondary cyclic hardening at 400 degrees C and the reversed strain sensitivity at temperatures from 200 degrees to 400 degrees C. The fracture mode was transgranular at 22-400 degrees C but changed to more intergranular-like at 600 degrees C due to the decohesion of grain boundaries, resulting in a reduction in fatigue life.
引用
收藏
页数:13
相关论文
共 84 条
[1]   Additive manufacturing of high-strength CrMnFeCoNi-based High Entropy Alloys with TiC addition [J].
Amar, Abdukadir ;
Li, Jinfeng ;
Xiang, Shuo ;
Liu, Xue ;
Zhou, Yuzhao ;
Le, Guomin ;
Wang, Xiaoying ;
Qu, Fengsheng ;
Ma, Shiyu ;
Dong, Wumei ;
Li, Qiang .
INTERMETALLICS, 2019, 109 :162-166
[2]   Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J].
Amato, K. N. ;
Gaytan, S. M. ;
Murr, L. E. ;
Martinez, E. ;
Shindo, P. W. ;
Hernandez, J. ;
Collins, S. ;
Medina, F. .
ACTA MATERIALIA, 2012, 60 (05) :2229-2239
[3]   Texture Analysis with MTEX - Free and Open Source Software Toolbox [J].
Bachmann, F. ;
Hielscher, R. ;
Schaeben, H. .
TEXTURE AND ANISOTROPY OF POLYCRYSTALS III, 2010, 160 :63-+
[4]   Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy [J].
Bae, Jae Wung ;
Moon, Jongun ;
Jang, Min Ji ;
Yim, Dami ;
Kim, Daeyong ;
Lee, Sunghak ;
Kim, Hyoung Seop .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 703 :324-330
[5]  
Bunge H.J., 1970, Krist. Und Tech, V5, P145, DOI DOI 10.1002/CRAT.19700050112
[6]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[7]   Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy, and High-Entropy Alloys [J].
Carroll, Robert ;
Lee, Chi ;
Tsai, Che-Wei ;
Yeh, Jien-Wei ;
Antonaglia, James ;
Brinkman, Braden A. W. ;
LeBlanc, Michael ;
Xie, Xie ;
Chen, Shuying ;
Liaw, Peter K. ;
Dahmen, Karin A. .
SCIENTIFIC REPORTS, 2015, 5
[8]   Fatigue behavior of high-entropy alloys: A review [J].
Chen PeiYong ;
Lee, Chanho ;
Wang Shao-Yu ;
Seifi, Mohsen ;
Lewandowski, John J. ;
Dahmen, Karin A. ;
Jia HaoLing ;
Xie Xie ;
Chen BiLin ;
Yeh Jien-Wei ;
Tsai Che-Wei ;
Yuan Tao ;
Liaw, Peter K. .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (02) :168-178
[9]  
Cottrell A., 1953, Dislocations and Plastic Flow in Crystals, DOI DOI 10.1119/1.1933704
[10]   Mesoscopic simulations of dislocations and plasticity [J].
Devincre, B ;
Kubin, LP .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 234 :8-14