Multi-Objective Optimisation of Web Business Processes

被引:0
|
作者
Tiwari, Ashutosh [1 ]
Turner, Christopher [1 ]
Ball, Peter [1 ]
Vergidis, Kostas [1 ]
机构
[1] Cranfield Univ, Decis Engn Ctr, Cranfield MK43 0AL, Beds, England
来源
SIMULATED EVOLUTION AND LEARNING | 2010年 / 6457卷
基金
英国工程与自然科学研究理事会;
关键词
Multi-objective optimisation; Business Process; EMOA; Web services;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an approach for the optimisation of web business processes using multi-objective evolutionary computing. Business process optimisation is considered as the problem of constructing feasible business process designs with optimum attribute values such as duration and cost. This optimisation framework involves the application of a series of Evolutionary Multi-objective Optimisation Algorithms (EMOAs) in an attempt to generate a series of diverse optimised business process designs for given requirements. The optimisation framework is tested to validate the framework's capability in capturing, composing and optimising business process designs constituted of web services. The results from the web business process optimisation scenario, featured in this paper, demonstrate that the framework can identify business process designs with optimised attribute values.
引用
收藏
页码:573 / 577
页数:5
相关论文
共 50 条
  • [21] Multi-objective optimisation of aircraft departure trajectories
    Zhang, Mengying
    Filippone, Antonio
    Bojdo, Nicholas
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 79 : 37 - 47
  • [22] Multi-objective optimisation under deep uncertainty
    Babooshka Shavazipour
    Theodor J. Stewart
    Operational Research, 2021, 21 : 2459 - 2487
  • [23] Multi-objective optimisation in scientific workflow.
    Hoang Anh Nguyen
    Van Iperen, Zane
    Raghunath, Sreekanth
    Abramson, David
    Kipouros, Timoleon
    Somasekharan, Sandeep
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 1443 - 1452
  • [24] Stochastic Multi-objective Optimisation of Exoskeleton Structures
    Reggio, Anna
    Greco, Rita
    Marano, Giuseppe Carlo
    Ferro, Giuseppe Andrea
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 187 (03) : 822 - 841
  • [25] Multi-objective optimisation under deep uncertainty
    Shavazipour, Babooshka
    Stewart, Theodor J.
    OPERATIONAL RESEARCH, 2021, 21 (04) : 2459 - 2487
  • [26] A Parallel Evolutionary System for Multi-objective Optimisation
    Hamdan, Mohammad
    Rudolph, Gunter
    Hochstrate, Nicola
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [27] PID controller tuning for unstable processes using a multi-objective optimisation design procedure
    Reynoso-Meza, G.
    Carrillo-Ahumada, J.
    Boada, Y.
    Pico, J.
    IFAC PAPERSONLINE, 2016, 49 (07): : 284 - 289
  • [28] Multi-Objective Optimisation of Multi-Output Neural Trees
    Ojha, Varun
    Nicosia, Giuseppe
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [29] Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem
    Nikolaos Argyris
    José Rui Figueira
    Alec Morton
    Journal of Global Optimization, 2011, 49 : 213 - 235
  • [30] Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem
    Argyris, Nikolaos
    Figueira, Jose Rui
    Morton, Alec
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 49 (02) : 213 - 235