Multi-Objective Optimisation of Web Business Processes

被引:0
|
作者
Tiwari, Ashutosh [1 ]
Turner, Christopher [1 ]
Ball, Peter [1 ]
Vergidis, Kostas [1 ]
机构
[1] Cranfield Univ, Decis Engn Ctr, Cranfield MK43 0AL, Beds, England
来源
SIMULATED EVOLUTION AND LEARNING | 2010年 / 6457卷
基金
英国工程与自然科学研究理事会;
关键词
Multi-objective optimisation; Business Process; EMOA; Web services;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an approach for the optimisation of web business processes using multi-objective evolutionary computing. Business process optimisation is considered as the problem of constructing feasible business process designs with optimum attribute values such as duration and cost. This optimisation framework involves the application of a series of Evolutionary Multi-objective Optimisation Algorithms (EMOAs) in an attempt to generate a series of diverse optimised business process designs for given requirements. The optimisation framework is tested to validate the framework's capability in capturing, composing and optimising business process designs constituted of web services. The results from the web business process optimisation scenario, featured in this paper, demonstrate that the framework can identify business process designs with optimised attribute values.
引用
收藏
页码:573 / 577
页数:5
相关论文
共 50 条
  • [1] Multi-objective optimisation of batch distillation processes
    Barakat, Tajalasfia M.
    Fraga, Eric S.
    Sorensen, Eva
    16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 955 - 960
  • [2] Multi-objective optimisation of batch separation processes
    Barakat, Tajalasfia M. M.
    Fraga, Eric S.
    Sorensen, Eva
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2008, 47 (12) : 2303 - 2314
  • [3] An evolutionary multi-objective framework for business process optimisation
    Vergidis, Kostas
    Saxena, Dhish
    Tiwari, Ashutosh
    APPLIED SOFT COMPUTING, 2012, 12 (08) : 2638 - 2653
  • [4] Multi-Objective Optimisation of Hot Forging Processes using a Genetic Algorithm
    Castro, C. F.
    Antonio, C. C.
    Sousa, L. C.
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [5] A Business Processes' Multi-objective Optimization Model Based on Simulation
    Quan, Liang
    Tian, Guo-shuang
    2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT, INNOVATION MANAGEMENT AND INDUSTRIAL ENGINEERING, VOL 4, PROCEEDINGS, 2009, : 572 - 575
  • [6] Evolutionary multi-objective optimisation: a survey
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2015, 7 (01) : 1 - 25
  • [7] Bat algorithm for multi-objective optimisation
    Yang, Xin-She
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2011, 3 (05) : 267 - 274
  • [8] Multi-Objective Optimisation for SSVEP Detection
    Zhang, Yue
    Zhang, Zhiqiang
    Xie, Shengquan
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN), 2021,
  • [9] Lens design as multi-objective optimisation
    Joseph, Shaine
    Kang, Hyung W.
    Chakraborty, Uday K.
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2011, 5 (03) : 189 - 218
  • [10] Multi-objective optimisation with hybrid machine learning strategy for complex catalytic processes
    Tai, Xin Yee
    Ocone, Raffaella
    Christie, Steven D. R.
    Xuan, Jin
    ENERGY AND AI, 2022, 7