Instance Level Classification Confidence Estimation

被引:1
作者
Alasalmi, Tuomo [1 ]
Koskimaki, Heli [1 ]
Suutala, Jaakko [1 ]
Roning, Juha [1 ]
机构
[1] Univ Oulu, Biomimet & Intelligent Syst Grp, POB 4500, Oulu, Finland
来源
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, (DCAI 2016) | 2016年 / 474卷
关键词
Classification; Confidence; Model uncertainty;
D O I
10.1007/978-3-319-40162-1_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Often the confidence of a classification prediction can be as important as the prediction itself although current classification confidence measures are not necessarily consistent between different data sets. Thus in this paper, we present an algorithm to predict instance level classification confidence that is more consistent between data sets and is intuitive to interpret. The results with five test cases show high correlation between true and predicted classification rate, i.e. the probability of assigning the correct class label, thus proving the validity of the proposed algorithm.
引用
收藏
页码:275 / 282
页数:8
相关论文
共 10 条
  • [1] [Anonymous], TECHNICAL REPORT
  • [2] [Anonymous], 7 EUR C CAS BAS REAS
  • [3] [Anonymous], 2013, Applied Predictive Modeling, DOI DOI 10.1007/978-1-4614-6849-3
  • [4] [Anonymous], P 6 INT C CAS BAS RE
  • [5] [Anonymous], IEEE S SER COMP INT
  • [6] Caputo B., 2002, P NIPS WORKSH STAT M
  • [7] The use of multiple measurements in taxonomic problems
    Fisher, RA
    [J]. ANNALS OF EUGENICS, 1936, 7 : 179 - 188
  • [8] Forina M, 1991, PARVUS-An extendible package for data exploration, classification and correlation
  • [9] A method to incorporate uncertainty in the classification of remote sensing images
    Goncalves, Luisa M. S.
    Fonte, Cidalia C.
    Julio, Eduardo N. B. S.
    Caetano, Mario
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (20) : 5489 - 5503
  • [10] Orozco J., 2008, 8 IEEE INT C AUTOMAT, P1