Vector bundles on toric varieties

被引:5
|
作者
Gharib, Saman [1 ]
Karu, Kalle [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
K-THEORY;
D O I
10.1016/j.crma.2011.12.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following Sam Payne's work, we study the existence problem of nontrivial vector bundles on toric varieties. The first result we prove is that every complete fan admits a nontrivial conewise linear multivalued function. Such functions could potentially be the Chern classes of toric vector bundles. Then we use the results of Cortinas, Haesemeyer, Walker and Weibel to show that the (non-equivariant) Grothendieck group of the toric 3-fold studied by Payne is large, so the variety has a nontrivial vector bundle. Using the same computation, we show that every toric 3-fold X either has a nontrivial line bundle, or there is a finite surjective toric morphism from Y to X, such that Y has a large Grothendieck group. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:209 / 212
页数:4
相关论文
共 50 条
  • [1] Equivariant vector bundles and logarithmic connections on toric varieties
    Biswas, Indranil
    Munoz, Vicente
    Sanchez, Jonathan
    JOURNAL OF ALGEBRA, 2013, 384 : 227 - 241
  • [2] STABILITY OF EQUIVARIANT VECTOR BUNDLES OVER TORIC VARIETIES
    Dasgupta, Jyoti
    Dey, Arijit
    Khan, Bivas
    DOCUMENTA MATHEMATICA, 2020, 25 : 1787 - 1833
  • [3] Seshadri constants of equivariant vector bundles on toric varieties
    Dasgupta, Jyoti
    Khan, Bivas
    Subramaniam, Aditya
    JOURNAL OF ALGEBRA, 2022, 595 : 38 - 68
  • [4] ERRATUM FOR "STABILITY OF EQUIVARIANT VECTOR BUNDLES OVER TORIC VARIETIES"
    Dasgupta, Jyoti
    Dey, Arijit
    Khan, Bivas
    DOCUMENTA MATHEMATICA, 2021, 26 : 1271 - 1274
  • [5] Vector bundles on toric varieties (vol 350, pg 209, 2012)
    Gharib, Saman
    Karu, Kalle
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 965 - 965
  • [6] Toric co-Higgs bundles on toric varieties
    Biswas, Indranil
    Dey, Arijit
    Poddar, Mainak
    Rayan, Steven
    ILLINOIS JOURNAL OF MATHEMATICS, 2021, 65 (01) : 181 - 190
  • [7] Toric degenerations and vector bundles
    Gubeladze, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (12) : 3493 - 3494
  • [8] EXISTENCE OF INDECOMPOSABLE RANK TWO VECTOR BUNDLES ON HIGHER DIMENSIONAL TORIC VARIETIES
    Cotignoli, Giulio
    Sterian, Alexandru
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (07) : 2564 - 2573
  • [9] Cox rings of projectivized toric vector bundles and toric flag bundles
    George, Courtney
    Manon, Christopher
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (11)
  • [10] Moduli of toric vector bundles
    Payne, Sam
    COMPOSITIO MATHEMATICA, 2008, 144 (05) : 1199 - 1213