Effect of external pressure on the hydrogen storage capacity of a graphene flake: molecular dynamics

被引:2
作者
Apkadirova, N. G. [1 ,2 ]
Krylova, K. A. [1 ,2 ]
Baimova, J. A. [2 ,3 ]
机构
[1] Ufa State Petr Technol Univ, Ufa 450062, Russia
[2] RAS, Inst Met Superplast Problems, Ufa 450001, Russia
[3] Ufa Univ Sci & Technol, Ufa 450067, Russia
来源
LETTERS ON MATERIALS | 2022年 / 12卷 / 4S期
基金
俄罗斯科学基金会;
关键词
molecular dynamics; graphene flake; hydrogenation; hydrogen energy; WALLED CARBON NANOTUBES; ADSORPTION; DEHYDROGENATION; NANOSTRUCTURES; BULK; H-2;
D O I
10.22226/2410-3535-2022-4-445-450
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The hydrogenation process of a crumpled graphene flake under the temperature and pressure is calculated by molecular dynamics. A graphene flake is placed in a hydrogen atmosphere containing both atomic and molecular hydrogen and exposed at finite temperature and pressure in an isothermal-isobaric (NPT) ensemble. Results show that the best gravimetric density is achieved at 77 K and external pressure of 140 atm. However, the increase in the gravimetric density at 77 K is due to the physical adsorption of hydrogen molecules, i.e., van der Waals forces are formed between the carbon surface and H2 molecules. At room temperature, the number of H atoms that formed a covalent bond with the edge C atoms increases during exposure at this temperature. The molecular dynamics simulation demonstrates that different types of hydrogen adsorption by a graphene flake predominate at two temperatures: at 77 K, physical adsorption plays the main role, and at 300 K, chemical adsorption. And the combination of high external pressure and low temperature makes it possible to achieve high values of a hydrogen sorption.
引用
收藏
页码:445 / 450
页数:6
相关论文
共 41 条
[21]  
Lesyukova V. V., 2019, INNOVATIVE TECHNOLOG, V1, P184
[22]   Hydrogen on graphene with low amplitude ripples: First-principles calculations [J].
Lobzenko, Ivan ;
Baimova, J. ;
Krylova, K. .
CHEMICAL PHYSICS, 2020, 530
[23]   Carbon vs silicon polyprismanes: a comparative study of metallic sp3-hybridized allotropes [J].
Maslov, Mikhail M. ;
Grishakov, Konstantin S. ;
Gimaldinova, Margarita A. ;
Katin, Konstantin P. .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (02) :97-103
[24]   Crumpling a thin sheet [J].
Matan, K ;
Williams, RB ;
Witten, TA ;
Nagel, SR .
PHYSICAL REVIEW LETTERS, 2002, 88 (07) :761011-761014
[25]   Structure and electronic properties of graphyne layers modeled on layers of graphene L3-12 [J].
Mavrinskii, V. V. ;
Belenkov, E. A. .
LETTERS ON MATERIALS, 2018, 8 (02) :169-173
[26]   The structure of suspended graphene sheets [J].
Meyer, Jannik C. ;
Geim, A. K. ;
Katsnelson, M. I. ;
Novoselov, K. S. ;
Booth, T. J. ;
Roth, S. .
NATURE, 2007, 446 (7131) :60-63
[27]   H2 and H2S separation by adsorption using graphene and zinc oxide sheets: Molecular dynamic simulations [J].
Molaghan, Pegah ;
Jahanshahi, Mohsen ;
Ahangari, Morteza Ghorbanzadeh .
PHYSICA B-CONDENSED MATTER, 2021, 619
[28]  
Novikov NV, 2017, LETT MATER, V7, P433, DOI 10.22226/2410-3535-2017-4-433-436
[29]   A theoretical analysis of the thermal conductivity of hydrogenated graphene [J].
Pei, Qing-Xiang ;
Sha, Zhen-Dong ;
Zhang, Yong-Wei .
CARBON, 2011, 49 (14) :4752-4759
[30]   Hydrogen storage in different carbon nanostructures [J].
Ritschel, M ;
Uhlemann, M ;
Gutfleisch, O ;
Leonhardt, A ;
Graff, A ;
Täschner, C ;
Fink, J .
APPLIED PHYSICS LETTERS, 2002, 80 (16) :2985-2987