Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication

被引:83
作者
Stichler, Simone [1 ]
Jungst, Tomasz [1 ]
Schamel, Martha [1 ]
Zilkowski, Ilona [1 ]
Kuhlmann, Matthias [1 ]
Boeck, Thomas [2 ]
Blunk, Torsten [2 ]
Tessmar, Joerg [1 ]
Groll, Juergen [1 ]
机构
[1] Univ Wurzburg, Dept Funct Mat Med & Dent, Pleicherwall 2, D-97070 Wurzburg, Germany
[2] Univ Wurzburg, Dept Trauma Hand Plast & Reconstruct Surg, Oberdurrbacher Str 6, D-97080 Wurzburg, Germany
关键词
Bioink; Bioprinting; Dispense plotting; Poly(glycidol); Hyaluronic acid; HYALURONIC-ACID; CROSS-LINKING; TISSUES; BIOCOMPATIBILITY; POLYGLYCIDOL; BIOMATERIALS; NANOGELS; ORGANS;
D O I
10.1007/s10439-016-1633-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study we introduce linear poly(glycidol) (PG), a structural analog of poly(ethylene glycol) bearing side chains at each repeating unit, as polymer basis for bioink development. We prepare allyl- and thiol-functional linear PG that can rapidly be polymerized to a three-dimensionally cross-linked hydrogel network via UV mediated thiol-ene click reaction. Influence of polymer concentration and UV irradiation on mechanical properties and swelling behavior was examined. Thiol-functional PG was synthesized in two structural variations, one containing ester groups that are susceptible to hydrolytic cleavage, and the other one ester-free and stable against hydrolysis. This allowed the preparation of degradable and non-degradable hydrogels. Cytocompatibility of the hydrogel was demonstrated by encapsulation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Rheological properties of the hydrogels were adjusted for dispense plotting by addition of high molecular weight hyaluronic acid. The optimized formulation enabled highly reproducible plotting of constructs composed of 20 layers with an overall height of 3.90 mm.
引用
收藏
页码:273 / 285
页数:13
相关论文
共 33 条
[21]   Hyaluronic Acid Click Hydrogels Emulate the Extracellular Matrix [J].
Owen, Shawn C. ;
Fisher, Stephanie A. ;
Tam, Roger Y. ;
Nimmo, Chelsea M. ;
Shoichet, Molly S. .
LANGMUIR, 2013, 29 (24) :7393-7400
[22]   3D Photo-Fabrication for Tissue Engineering and Drug Delivery [J].
Pereira, Ruben F. ;
Bartolo, Paulo J. .
ENGINEERING, 2015, 1 (01) :90-112
[23]  
Pereira RF, 2015, J APPL POLYM SCI, V132, DOI [10.1002/app.42458, 10.1002/APP.42458]
[24]   Hyaluronic Acid and Dextran-Based Semi-IPN Hydrogels as Biomaterials for Bioprinting [J].
Pescosolido, Laura ;
Schuurman, Wouter ;
Malda, Jos ;
Matricardi, Pietro ;
Alhaique, Franco ;
Coviello, Tommasina ;
van Weeren, P. Rene ;
Dhert, Wouter J. A. ;
Hennink, Wim E. ;
Vermonden, Tina .
BIOMACROMOLECULES, 2011, 12 (05) :1831-1838
[25]   Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development [J].
Roberts, Justine J. ;
Bryant, Stephanie J. .
BIOMATERIALS, 2013, 34 (38) :9969-9979
[26]   Biofabrication of Cell-Loaded 3D Spider Silk Constructs [J].
Schacht, Kristin ;
Juengst, Tomasz ;
Schweinlin, Matthias ;
Ewald, Andrea ;
Groll, Juergen ;
Scheibel, Thomas .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (09) :2816-2820
[27]  
Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/nmeth.2019, 10.1038/NMETH.2019]
[28]   Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs [J].
Schuurman, Wouter ;
Levett, Peter A. ;
Pot, Michiel W. ;
van Weeren, Paul Rene ;
Dhert, Wouter J. A. ;
Hutmacher, Dietmar W. ;
Melchels, Ferry P. W. ;
Klein, Travis J. ;
Malda, Jos .
MACROMOLECULAR BIOSCIENCE, 2013, 13 (05) :551-561
[29]   Embedding of Active Proteins and Living Cells in Redox-Sensitive Hydrogels and Nanogels through Enzymatic Cross-Linking [J].
Singh, Smriti ;
Topuz, Fuat ;
Hahn, Kathrin ;
Albrecht, Krystyna ;
Groll, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (10) :3000-3003
[30]  
Skardal A, 2010, TISSUE ENG PT A, V16, P2675, DOI [10.1089/ten.tea.2009.0798, 10.1089/ten.TEA.2009.0798]